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We now look at another approximation technique used in quantum me-

chanics. This is the WKB (named for the German physicist Gregor Wentzel
(1898 - 1978), the Dutch physicist Hendrik Kramers (1894 - 1952) and the
French physicist Léon Brillouin (1889 - 1969)) approximation, which is
a mathematical technique applicable to one-dimensional differential equa-
tions.

We’ll start with the usual one-dimensional time-independent Schrödinger
equation

− h̄2

2m
d2ψ

dx2 +V (x)ψ = Eψ (1)

and rewrite it as

d2ψ

dx2 = −2m [E−V (x)]

h̄2 ψ (2)

≡ −p
2

h̄2ψ (3)

where p =
√

2m [E−V (x)] is the classical formula for the momentum of
a particle with total energy E moving in a one-dimensional potential V (x),
provided we assume E ≥ V (x) for all x.

In general, the wave function ψ (x) is a complex function so we can write
it in complex exponential form as

ψ (x) = A(x)eiφ(x) (4)

where A(x) is the amplitude and φ(x) is the phase, both of which are real
functions. In this form, we have (using a prime to denote a derivative with
respect to x):
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ψ′ =
(
A′+ iAφ′

)
eiφ (5)

ψ′′ =
(
A′′+ iA′φ′+ iAφ′′+ iA′φ′−A

(
φ′
)2
)
eiφ (6)

=
(
A′′+2iA′φ′+ iAφ′′−A

(
φ′
)2
)
eiφ (7)

Inserting this into 3 and cancelling off eiφ we get

A′′+2iA′φ′+ iAφ′′−A
(
φ′
)2

=−p
2

h̄2A (8)

Everything in this equation is real apart from i itself, so we can sepa-
rate this equation into its real and imaginary parts to get two differential
equations:

A′′−A
(
φ′
)2

= −p
2

h̄2A (9)

2A′φ′+Aφ′′ = 0 (10)

The second of these equations can always be solved as

2A′φ′+Aφ′′ =
1
A

[
A2φ′

]′
= 0 (11)[

A2φ′
]′

= 0 (12)

A2φ′ = C2 (13)

where C is a constant, which may be complex (since φ′ could be negative).
We can therefore write the amplitude as

A(x) =
C√
φ′

(14)

We’ve taken the positive square root, since any difference in sign can be
accounted for by changing the integration constant C.

Equation 9 can’t be solved in general since it depends on V (x) which
could in principle be anything. However, we can rewrite it as

A′′

A
=
(
φ′
)2− p2

h̄2 (15)

This is where the approximation comes in. If V (x) were constant then
we can solve the Schrödinger equation exactly (as we did with the finite
square well and finite square barrier). If E > V we get a travelling wave
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with a constant amplitude A and constant wavelength λ = 2πh̄/p, while if
E < V we get an exponential decay with a characteristic decay length of
` = h̄/

√
2m [V (x)−E]. Now suppose that V (x) is not constant, but that

it varies slowly compared to either λ or `. In this case, we’d expect that the
wave function is close to ψ for a constant potential, except that its amplitude
and phase will vary slightly. The approximation comes by assuming that
the variation in amplitude is small enough that the derivatives of A(x) are
negligible compared to A(x) itself. That is, we can set the LHS of 15 to
zero, which allows us to write down a solution of the RHS:

φ′ = ±p
h̄

(16)

φ(x) = ±1
h̄

ˆ
p dx (17)

This is written as an indefinite integral, since the constant of integration
(K say) can be absorbed into C:

φ(x) = ±1
h̄

ˆ
p dx+K (18)

ψ (x) = A(x)eiφ(x) (19)

=
C√
φ′
eiKe±i

´
p dx/h̄ (20)

=
C
√
h̄eiK√
p(x)

e±i
´
p dx/h̄ (21)

=
C1√
p(x)

e±i
´
p dx/h̄ (22)

where

C1 ≡ C
√
h̄eiK (23)

The WKB approximation for the wave function is thus

ψ (x)≈ C1√
p(x)

e±i
´
p dx/h̄ (24)

Provided we can do the integral in the exponent, we can find the wave
function and, by imposing boundary conditions, we can often find the al-
lowed energies as well.

Example. We have an infinite square well with a shelf in the well, with the
potential given by
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V (x) =


V0 0 < x < a

2
0 a

2 < x < a

∞ x < 0 or x > a

(25)

The classical momentum is

p(x) =

{√
2m(E−V0) 0 < x < a

2√
2mE a

2 < x < a
(26)

so we have

ˆ x

0
p dx′ =

{
x
√

2m(E−V0) 0 < x < a
2

a
2

√
2m(E−V0)+

(
x− a

2

)√
2mE a

2 < x < a
(27)

We’ve put limits on the integral with the understanding that any constant of
integration is absorbed into the overall constant that multiplies the ampli-
tude. This constant will be determined by normalization as usual.

We thus have

φ(x) =

{
±x
h̄

√
2m(E−V0) 0 < x < a

2

± 1
h̄

[
a
2

√
2m(E−V0)+

(
x− a

2

)√
2mE

]
a
2 < x < a

(28)

We can now write the wave function as

ψ (x) =


1

[2m(E−V0)]
1/4

(
C+e

iφ(x)+C−e
−iφ(x)

)
0 < x < a

2

1
[2mE]1/4

(
C+e

iφ(x)+C−e
−iφ(x)

)
a
2 < x < a

(29)

where the constants C+ and C− can be determined from boundary condi-
tions and normalization as usual. (Actually, it’s worth pointing out here
that although φ(x) is continuous at x = a

2 , the WKB wave function ψ (x)
is not continuous at this point. This violates one of the central conditions
imposed on wave functions. The discontinuity arises from the discontinuity
in the potential at this point, which violates one of the assumptions of WKB
theory: that the potential varies slowly. Thus at the boundaries, the WKB
assumptions don’t hold, so it’s a bit surprising that WKB gives a reasonable
result for this problem since there are infinite discontinuities at x = 0 and
x= a.)

To get the allowed energies, we can impose continuity at the end points
of the well. That is
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ψ (0) = ψ (a) = 0 (30)
To use this condition, it’s easier to write the wave function using trigono-

metric functions:

ψ (x) =


1

[2m(E−V0)]
1/4 (C1 sinφ(x)+C2 cosφ(x)) 0 < x < a

2
1

[2mE]1/4 (C1 sinφ(x)+C2 cosφ(x)) a
2 < x < a

(31)

The condition ψ (0)= 0 gives usC2 = 0 while the other condition ψ (a)=
0 tells us

sin(φ(a)) = 0 (32)

φ(a) = nπ (33)[√
2m(En−V0)+

√
2mEn

] a
2h̄

= nπ (34)

Doing a bit of algebra we get

E− V0

2
+
√
E (E−V0) =

n2π2h̄2

ma2 (35)

The quantity on the RHS is twice the allowed energiesE0
n of the ordinary

infinite square well. Solving this for E we get

E = E0
n+

V0

2
+

V 2
0

16E0
n

(36)

Griffiths shows in his Example 6.1 that first-order perturbation theory
gives a result of

E = E0
n+

V0

2
(37)

This agrees with the WKB result when V0 � E0
n, which occurs either

when the height of the shelf is very small, or when E0
n is very large; the

latter case occurs when n is large and we’re approaching the classical zone.
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