PHASES IN THE ADIABATIC APPROXIMATION

Link to: physicspages home page.

To leave a comment or report an error, please use the auxiliary blog.

Reference: Griffiths, David J. (2005), Introduction to Quantum Mechanics, 2nd Edition; Pearson Education - Problem 10.3.

The adiabatic theorem (see Griffiths, section 10.1 for a proof) says that if a system starts out in the nth state of a time-dependent hamiltonian, and the hamiltonian changes slowly compared to the internal period of the time-independent wave function (that is, the time scale over which the hamiltonian changes is much longer than \hbar/E_n), then after a time t the system will end up in state

$$\Psi_n(t) = e^{i\theta_n(t)} e^{i\gamma_n(t)} \psi_n(t) \tag{1}$$

where

$$\theta_n(t) \equiv -\frac{1}{\hbar} \int_0^t E_n(t') dt'$$
 (2)

$$\gamma_n(t) \equiv i \int_0^t \left\langle \psi_n(t') \left| \frac{\partial}{\partial t'} \psi_n(t') \right\rangle dt' \right\rangle dt'$$
 (3)

 θ is called the *dynamic phase* and γ is called the *geometric phase*.

The wave functions $\psi_n(t)$ are the solutions of the eigenvalue equation at a particular time t:

$$H(t)\psi_n(t) = E_n(t)\psi_n(t) \tag{4}$$

That is, they aren't a full solution of the time dependent Schrödinger equation; rather they are the solutions of the time-independent Schrödinger equation with whatever parameters are now time-dependent in the hamiltonian replaced by their time-dependent forms.

For example, with an infinite square well whose right wall moves so that its position w is a function of time w(t), we have

$$\psi_n(t) = \sqrt{\frac{2}{w(t)}} \sin \frac{n\pi}{w(t)} x \tag{5}$$

$$E_n(t) = \frac{(n\pi\hbar)^2}{2mw^2(t)} \tag{6}$$

In this case, ψ_n depends on only one time-dependent parameter, so we can use the chain rule to write

$$\gamma_n(t) = i \int_0^t \left\langle \psi_n \left| \frac{\partial}{\partial w} \psi_n \right\rangle \frac{dw}{dt'} dt' \right\rangle$$
 (7)

$$= i \int_{w_1}^{w_2} \left\langle \psi_n \left| \frac{\partial}{\partial w} \psi_n \right\rangle dw \right. \tag{8}$$

where the wall moves from w_1 to w_2 between times 0 and t. We get

$$\frac{\partial}{\partial w}\psi_n = -\frac{\sqrt{2}}{2w^{5/2}} \left[w \sin \frac{n\pi}{w} x + 2n\pi x \cos \frac{n\pi}{w} x \right] \tag{9}$$

$$\left\langle \psi_n \left| \frac{\partial}{\partial w} \psi_n \right. \right\rangle = -\frac{1}{w^3} \int_0^w \sin \frac{n\pi}{w} x \left[w \sin \frac{n\pi}{w} x + 2n\pi x \cos \frac{n\pi}{w} x \right] dx \tag{10}$$

$$=\frac{\sin^2 n\pi}{w}\tag{11}$$

$$=0 (12)$$

In this case, there is no change in phase due to the geometric phase. In fact, we can see this is generally true for real wave functions ψ_n since

$$\langle \psi_n | \psi_n \rangle = 1 \tag{13}$$

$$\frac{d}{dt}\langle\psi_n|\psi_n\rangle = 0\tag{14}$$

$$= \langle \dot{\psi}_n | \psi_n \rangle + \langle \psi_n | \dot{\psi}_n \rangle \tag{15}$$

$$=2\Re\left(\left\langle \psi_{n}\left|\dot{\psi}_{n}\right\rangle \right)\tag{16}$$

That is, $\left\langle \psi_n\left(t'\right) \middle| \frac{\partial}{\partial t'} \psi_n\left(t'\right) \right\rangle$ must be purely imaginary, so if ψ_n is real, the bracket must be zero. This also means that γ is always real.

Thus γ is zero as the wall moves from w_1 to w_2 and also as it moves back from w_2 to w_1 .

The dynamic phase for the same journey is

$$\theta_n(t) = -\frac{1}{\hbar} \int_0^t E_n(t') dt'$$
 (17)

$$= -\frac{\hbar (n\pi)^2}{2m} \int_0^t \frac{1}{w^2(t')} dt'$$
 (18)

If the speed of the wall is constant so that $w = w_1 + vt$ we have

$$\theta_n(t) = -\frac{\hbar (n\pi)^2}{2m} \int_0^{(w_2 - w_1)/v} \frac{dt'}{(w_1 + vt')^2}$$
(19)

$$=\frac{\hbar (n\pi)^2}{2mv} \frac{w_1 - w_2}{w_1 w_2} \tag{20}$$

PINGBACKS

Pingback: Phases in the adiabatic theorem: delta function well

Pingback: Geometric phase is always zero for real wave functions

Pingback: Berry's phase: definition and value for a spin-1 particle in a magnetic

Pingback: Forced harmonic oscillator: exact solution and adiabatic approximation