PHASES IN THE ADIABATIC APPROXIMATION
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The ladiabatic theorem| (see Griffiths, section 10.1 for a proof) says that
if a system starts out in the nth state of a time-dependent hamiltonian, and
the hamiltonian changes slowly compared to the internal period of the time-
independent wave function (that is, the time scale over which the hamilton-
ian changes is much longer than %/ E,,), then after a time ¢ the system will
end up in state

W, (t) = et 1@y, (3) (1)

where
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6 is called the dynamic phase and ~ is called the geometric phase.
The wave functions 1), (t) are the solutions of the eigenvalue equation at
a particular time ¢:

H (t> Un (t) = Ey (t) Un (t) “4)

That is, they aren’t a full solution of the time dependent Schroédinger
equation; rather they are the solutions of the time-independent Schrodinger
equation with whatever parameters are now time-dependent in the hamil-
tonian replaced by their time-dependent forms.

For example, with an infinite square well whose right wall moves so that

its position w is a function of time w (¢), we have
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Uy (t) = w2(t) sin utl(:)x 5)
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In this case, 1), depends on only one time-dependent parameter, so we
can use the chain rule to write

[t 0 dw ,
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where the wall moves from w; to w; between times 0 and . We get
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In this case, there is no change in phase due to the geometric phase. In
fact, we can see this is generally true for real wave functions 1),, since

(thn [thn) =1 (13)
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That is, (¢, (') |2, (#') ) must be purely imaginary, so if ¢, is real,
the bracket must be zero. This also means that ~y is always real.

Thus -y is zero as the wall moves from w; to w; and also as it moves back
from wy to wy.

The dynamic phase for the same journey is
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If the speed of the wall is constant so that w = w; + vt we have

h (nﬂ‘)z /(wz_wl)/v dt/
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