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The adiabatic theorem (see Griffiths, section 10.1 for a proof) says that

if a system starts out in the nth state of a time-dependent hamiltonian, and
the hamiltonian changes slowly compared to the internal period of the time-
independent wave function (that is, the time scale over which the hamilton-
ian changes is much longer than h̄/En), then after a time t the system will
end up in state

Ψn (t) = eiθn(t)eiγn(t)ψn (t) (1)

where

θn (t) ≡ −1
h̄

ˆ t

0
En
(
t′
)
dt′ (2)

γn (t) ≡ i

ˆ t

0

〈
ψn
(
t′
)∣∣∣∣ ∂∂t′ψn (t′)

〉
dt′ (3)

θ is called the dynamic phase and γ is called the geometric phase.
The wave functions ψn (t) are the solutions of the eigenvalue equation at

a particular time t:

H (t)ψn (t) = En (t)ψn (t) (4)

That is, they aren’t a full solution of the time dependent Schrödinger
equation; rather they are the solutions of the time-independent Schrödinger
equation with whatever parameters are now time-dependent in the hamil-
tonian replaced by their time-dependent forms.

For example, with an infinite square well whose right wall moves so that
its position w is a function of time w (t), we have
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ψn (t) =

√
2

w (t)
sin

nπ

w (t)
x (5)

En (t) =
(nπh̄)2

2mw2 (t)
(6)

In this case, ψn depends on only one time-dependent parameter, so we
can use the chain rule to write

γn (t) = i

ˆ t

0

〈
ψn

∣∣∣∣ ∂∂wψn
〉
dw

dt′
dt′ (7)

= i

ˆ w2

w1

〈
ψn

∣∣∣∣ ∂∂wψn
〉
dw (8)

where the wall moves from w1 to w2 between times 0 and t. We get

∂

∂w
ψn =−

√
2

2w5/2

[
w sin

nπ

w
x+2nπxcos

nπ

w
x
]

(9)〈
ψn

∣∣∣∣ ∂∂wψn
〉
=− 1

w3

ˆ w

0
sin

nπ

w
x
[
w sin

nπ

w
x+2nπxcos

nπ

w
x
]
dx (10)

=
sin2nπ

w
(11)

= 0 (12)

In this case, there is no change in phase due to the geometric phase. In
fact, we can see this is generally true for real wave functions ψn since

〈ψn |ψn 〉= 1 (13)
d

dt
〈ψn |ψn 〉= 0 (14)

=
〈
ψ̇n |ψn

〉
+
〈
ψn
∣∣ψ̇n 〉 (15)

= 2ℜ
(〈
ψn
∣∣ψ̇n 〉) (16)

That is,
〈
ψn (t

′)
∣∣ ∂
∂t′ψn (t

′)
〉

must be purely imaginary, so if ψn is real,
the bracket must be zero. This also means that γ is always real.

Thus γ is zero as the wall moves from w1 to w2 and also as it moves back
from w2 to w1.

The dynamic phase for the same journey is
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θn (t) = −1
h̄

ˆ t

0
En
(
t′
)
dt′ (17)

= − h̄(nπ)
2

2m

ˆ t

0

1
w2 (t′)

dt′ (18)

If the speed of the wall is constant so that w = w1 +vt we have

θn (t) =−
h̄(nπ)2

2m

ˆ (w2−w1)/v

0

dt′

(w1 +vt′)
2 (19)

=
h̄(nπ)2

2mv
w1−w2

w1w2
(20)
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