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For spherically symmetric potentials, the general solution to the Schrödinger

equation for the scattering problem has the form

ψ (r,θ) = A

(
eikz+f (θ)

eikr

r

)
(1)

where f is the scattering amplitude. The first term on the RHS repre-
sents the incident plane wave, and the second term on the RHS represents
the scattered wave. One way of finding f is partial wave analysis, which
Griffiths describes in detail in his section 11.2, so I won’t repeat the whole
derivation here. It is worth, however, giving an overview of the technique
to highlight the main concepts.

The main idea is to use the solution of the three-dimensional Schrödinger
equation for a spherically symmetric potential that we considered earlier.
The solution splits into two factors: a spherical harmonic Y ml (θ,φ) that
depends only on the angular coordinates and is independent of the potential,
and a radial function R (r) that depends only on the radial coordinate and
does depend on the potential. The function u(r)≡ rR (r) satisfies the radial
equation

− h̄2

2m
d2u

dr2 +

(
V +

h̄2

2m
l(l+1)
r2

)
u= Eu (2)

In the region far from the target, where V is very small, we can neglect
the potential term and get the equation

− h̄2

2m
d2u

dr2 +
h̄2

2m
l(l+1)
r2 u= Eu (3)

This ODE can be solved in general using Hankel functions, and if we
restrict our attention only to outgoing waves (since we’re considering only
particles scattering outwards from the target), we end up with an overall
wave function of
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ψ (r,θ) = A

{
eikz+k

∞

∑
l=0

il+1 (2l+1)alh
(1)
l (kr)Pl (cosθ)

}
(4)

where

k ≡
√

2mE
h̄

(5)

the Hankel function of the first kind is defined by

h
(1)
l (x)≡ jl (x)+ inl (x) (6)

(with jl and nl being spherical Bessel functions), and the Pl being Le-
gendre polynomials. The coefficients al are what must be calculated for the
particular potential being used.

For large r (far from the target), we can use the asymptotic forms of the
h
(1)
l (kr) which are

h
(1)
l (kr)∼ (−i)l+1 e

ikr

kr
(7)

so in this region the wave function becomes

ψ (r,θ) ≈ A

{
eikz+f (θ)

eikr

r

}
(8)

f (θ) ≡
∞

∑
l=0

(2l+1)alPl (cosθ) (9)

so we get an explicit formula for the scattering amplitude f .
The differential cross-section is given by a rather ugly formula:

D (θ) =
dσ

dΩ
= |f (θ)|2 (10)

=
∞

∑
l=0

∞

∑
l′=0

(2l+1)
(
2l′+1

)
alal′Pl (cosθ)Pl′ (cosθ) (11)

Integrating this over solid angle and using the orthonormality of the Pl,
we get the total cross-section

σ = 4π
∞

∑
l=0

(2l+1) |al|2 (12)

http://physicspages.com/pdf/Griffiths QM/Griffiths Problems 04.07.pdf
http://physicspages.com/pdf/Mathematics/Legendre equation - polynomials.pdf
http://physicspages.com/pdf/Mathematics/Legendre equation - polynomials.pdf
http://physicspages.com/pdf/Griffiths QM/Griffiths Problems 11.02.pdf


QUANTUM SCATTERING: PARTIAL WAVE ANALYSIS 3

Finally, to get a consistent formula where everything is in spherical co-
ordinates, we need to convert the plane wave eikz to spherical coordinates
which gives the final result for the wave function:

ψ (r,θ) = A
∞

∑
l=0

il (2l+1)
[
jl (kr)+ ikalh

(1)
l (kr)

]
Pl (cosθ) (13)

To find the als, we need to solve the Schrödinger equation for the region
near the target, where V 6= 0, and then match this solution up to the exterior
solution 13 at the boundary between the two regions. Doing this requires a
well-defined boundary, so it would seem that this method doesn’t work for
potentials that fall off continuously out to infinity.

Example 1. As a simple example of how this boundary matching process
works, we consider the case of hard-sphere scattering. We have a sphere
that is impenetrable so that

V =

{
∞ r ≤ a
0 r > a

(14)

An infinite potential means that ψ (r,θ) = 0 for r ≤ a, so the boundary
condition occurs over the sphere r = a. Matching this to 13, we get

∞

∑
l=0

il (2l+1)
[
jl (ka)+ ikalh

(1)
l (ka)

]
Pl (cosθ) = 0 (15)

We can work out al by multiplying this equation by Pl′ (cosθ) and inte-
grating over θ, using the orthonormality of the Pl:

∞

∑
l=0

il (2l+1)
[
jl (ka)+ ikalh

(1)
l (ka)

]ˆ π

0
Pl (cosθ)Pl′ (cosθ) = 0 (16)

∞

∑
l=0

il (2l+1)
[
jl (ka)+ ikalh

(1)
l (ka)

]
δll′ = 0 (17)

il
′ (

2l′+1
)[
jl′ (ka)+ ikal′h

(1)
l′ (ka)

]
= 0 (18)

Therefore, the coefficients are

al = i
jl (ka)

kh
(1)
l (ka)

(19)

[Note that Griffiths’s eqn 11.33 is wrong: there shouldn’t be a minus sign
on the RHS.]
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Example 2. The delta-function spherical shell. Given the potential

V (r) = αδ (r−a) (20)
we want to find f (θ). We’ll take the incident particle to have very low

energy, so that ka� 1. Since k = 2π/λ this amounts to saying that λ� a
so that the wavelength of the particle is much greater than the size of the
target. From Planck’s formula E = hν = h/λ, this is equivalent to the
particle having a low energy. In the text, Griffiths shows that the cross
section can be expanded in powers of (ka)l, so for low energy, only the
l = 0 term is significant, so we’ll restrict our analysis to that case.

The exterior solution is given by the l = 0 term from 13:

ψext = A
[
j0 (kr)+ ika0h

(1)
0 (kr)P0 (cosθ)

]
(21)

We can use the small argument forms of the Bessel and Hankel functions:

j0 (kr) ≈
sinkr
kr

(22)

h
(1)
0 (kr) ≈ −ie

ikr

kr
(23)

Also, P0 = 1 so we get, for r ≥ a:

ψext =
A

kr

[
sinkr+ka0e

ikr
]

(24)

For the internal function for r < a, the potential is V = 0, so the general
solution of the radial equation 2 is

u(r) = B sinkr+D coskr (25)

R (r) =
u(r)

r
(26)

= B
sinkr
r

+D
coskr
r

(27)

This solution must be valid at r = 0, so only the sinkr
r term is finite there,

so we must have D = 0, giving

ψin (r) =B
sinkr
r

(28)

The wave function must be continuous at the boundary r = a, so

A

ka

[
sinka+ka0e

ika
]
=B

sinka
a

(29)
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Since the delta function is infinite at r = a, we can’t assume that the de-
rivative of the wave function is continuous there, but we can use the same
method that we used in analyzing the delta function well to get another
boundary condition. The radial equation 2 for u is the same as the one di-
mensional Schrödinger equation that we solved for the delta function well,
except that the delta function here is a barrier rather than a well, so we re-
place −α by +α to get the condition on the derivative. The radial equation
for l = 0 is

− h̄2

2m
d2u

dx2 +αδ(x)u= Eu (30)

Now if we integrate this equation term by term across the boundary, we
get, for some value of ε:

− h̄2

2m

ˆ ε

−ε

d2u

dr2 dr+α

ˆ a+ε

a−ε
δ(r−a)u dr = E

ˆ a+ε

a−ε
u dr (31)

− h̄2

2m
du

dr

∣∣∣a+ε
a−ε

+αu(a) = E

ˆ a+ε

a−ε
u dr (32)

If we take the limit as ε→ 0, the integral on the right tends to zero, since it
is the integral of a continuous function over an infinitesimally small interval.
The first term on the left, however, will not be zero, since derivative of the
wave function is not continuous when the potential is infinite. Thus we get

lim
ε→0

du

dr

∣∣∣a+ε
a−ε

=
2mα
h̄2 u(a) (33)

To simplify the notation in what follows I’ll use the following shorthand:

s ≡ sinka (34)
c ≡ coska (35)
e ≡ eika (36)

From 24 and 28
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uext (r) = rψext (r) (37)

=
A

k
(s+ka0e) (38)

duext
dr

∣∣∣∣
r=a

= A(c+ ika0e) (39)

uin (r) = rψin (r) (40)
= Bs (41)

duin
dr

∣∣∣∣
r=a

= Bkc (42)

From 33 we get

lim
ε→0

du

dr

∣∣∣a+ε
a−ε

=
duext
dr

∣∣∣∣
r=a

− duin
dr

∣∣∣∣
r=a

(43)

= (A−Bk)c+Aika0e (44)

=
2mα
h̄2 u(a) (45)

=
2mα
h̄2 Bs (46)

To get rid of the constants A and B we use 29:

B =
s+ka0e

ks
A (47)

so we get from 44 and 46(
1− s+ka0e

s

)
c+ ika0e=

s2 +ka0es

sk

β

a
(48)

where

β ≡ 2mαa
h̄2 (49)

Solving for a0 gives (restoring the full notation):

a0 =−
βe−ika sin2ka

(β sinka+kacoska− iak sinka)k
(50)

For ka� 1 we can approximate sinka ≈ ka, coska ≈ 1 and e−ika ≈ 1,
so
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a0 ≈ − β (ka)2(
βka+ka− i(ak)2

)
k

(51)

≈ − βa

1+β
(52)

where we dropped the imaginary term in the denominator since it is of
second order in ak.

The scattering amplitude, differential cross section and total cross section
are, from 9, 11 and 12:

f (θ) = a0 =−
βa

1+β
(53)

dσ

dΩ
= |f (θ)|2 = β2a2

(1+β)2 (54)

σ = 4π |a0|2 = 4π
β2a2

(1+β)2 (55)

As the strength α of the delta function gets higher, β→ ∞ and the cross
section tends to 4πa2, which is the cross section for a hard sphere. Thus
even though the delta function presents an infinite barrier, if it is of finite
strength, the total cross section is less than that of a hard sphere.
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