BORN APPROXIMATION FOR A SPHERICAL DELTA FUNCTION SHELL

Earlier we looked at scattering from a delta function spherical shell for a low energy incident particle, using partial wave analysis. This was a fairly complex task, as it involved matching interior and exterior wave functions at the delta function boundary.

Here, we’ll calculate the scattering amplitude using the first Born approximation. For a spherically symmetric potential, the approximation is

\[f(\theta) \approx -\frac{2m}{\hbar^2 \kappa} \int_0^\infty V(r) r \sin(\kappa r) dr \]

(1)

where

\[\kappa \equiv 2k \sin \frac{\theta}{2} \]

(2)

For a delta function potential

\[V(r) = \alpha \delta(r - a) \]

(3)

where \(\alpha \) is a constant representing the strength of the delta function, so we get

\[f(\theta) \approx -\frac{2m\alpha a}{\hbar^2 \kappa} \sin(\kappa a) \]

(4)

For low energy, \(ka \ll 1 \) so \(\kappa a \ll 1 \) as well, so \(\sin(\kappa a) \approx \kappa a \), and we get

\[f(\theta) \approx -\frac{2m\alpha a^2}{\hbar^2} \]

(5)

Our earlier result using partial wave analysis is

\[f(\theta) \approx -\frac{\beta a}{1 + \beta} \]

(6)

where
\[\beta \equiv \frac{2m \alpha a}{\hbar^2} \]

This gives a differential cross section and total cross section of

\[\frac{d\sigma}{d\Omega} = |f(\theta)|^2 = \beta^2 a^2 \]

\[\sigma = 4\pi \beta^2 a^2 \]

The low energy result from the Born approximation is, in terms of \(\beta \):

\[f(\theta) \approx -\beta a \]

so it agrees with the partial wave result if \(\beta \ll 1 \). This is equivalent to the condition that \(\alpha \ll \hbar^2 / 2ma \), in other words, that the potential is weak. This was the main assumption in deriving the Born approximation, so in this limit, the results are consistent.