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The complete Schrödinger equation for the harmonic oscillator potential

is

− h̄2

2m
d2ψ

dx2 +
1
2
kx2ψ = Eψ (1)

To solve this equation, we split the wave function ψ into two factors: the
first factor is the asymptotic behaviour for large x, and the second is a func-
tion f which we have yet to find. To simplify the notation we introduced
two auxiliary variables.

The independent variable y is related to the spatial variable x by

y ≡
√
mω

h̄
x (2)

and the parameter ε is related to the energy E by

ε≡ 2E
h̄ω

(3)

The parameter ω is the frequency of the oscillator.
After analyzing the asymptotic behaviour of the Schrödinger equation for

the harmonic oscillator, we write the wave function in the form

ψ(y) = e−y2/2f(y) (4)

Substituting this back into the Schrödinger equation gives us a differential
equation for f(y):

d2f

dy2 −2y
df

dy
+(ε−1)f = 0 (5)

If we hurl this equation into mathematical software like Maple, it tells
us that the solution involves two forms of Kummer functions, otherwise
known as confluent hypergeometric functions of the first and second kinds.
Apart from being able to impress your friends in the pub, these terms don’t
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really help us learn much about the physics. For that we need to solve the
differential equation using a power series.

The idea is to propose a solution of the form

f(y) =
∞

∑
j=0

ajy
j (6)

The theory behind Taylor series in elementary calculus assures us that
for any ’reasonable’ function (that is, pretty well any function found in
physics), it is possible to write the function as a power series, so we should
be able to find such a solution. At this stage, we can’t guarantee that such a
solution will tell us much, but it’s worth a try.

To use the series, we need to calculate its first two derivatives:

df

dy
=

∞

∑
j=0

jajy
j−1 (7)

d2f

dy2 =
∞

∑
j=0

j(j−1)ajyj−2 (8)

=
∞

∑
j=0

(j+2)(j+1)aj+2y
j (9)

The fancy footwork in the last line just relabels the summation index to
make it more convenient for the next step, as we’ll see. To convince yourself
it is the same series as the line above it, just write out the first 4 or 5 terms in
the series and you’ll see it is the same. Notice also that in the first derivative
series the first term is zero due to the factor of j, so we don’t actually get a
term with y−1 in it.

We now want to substitute these derivatives back into the differential
equation 5 we want to solve. The reason we juggled the summation in-
dex in the second derivative is that we want the series in all three terms in
the equation to contain yj terms rather than y to some other power. This
makes it easier to group together the terms with equal powers of y.

Doing the substitution, we get:

∞

∑
j=0

(j+2)(j+1)aj+2y
j −2

∞

∑
j=0

jajy
j +(ε−1)

∞

∑
j=0

ajy
j = 0 (10)

∞

∑
j=0

[(j+2)(j+1)aj+2 −2jaj +(ε−1)aj ]yj = 0 (11)

From the mathematics of power series expansions, it is known that any
given function’s expansion is unique (the proof takes us too far into pure
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mathematics so we’ll leave it for now). That means that, having decided
on a value for ε, there is one and only one sequence of ajs that defines the
function f(y). So, since y can be any value, the only way the above sum can
be zero for all values of y is if the coefficient of each power of y vanishes
separately. That is,

(j+2)(j+1)aj+2 −2jaj +(ε−1)aj = 0 (12)

This, in turn, gives a recursion relation for the coefficients:

aj+2 =
2j+1− ε

(j+1)(j+2)
aj (13)

Since we are solving a second order differential equation we would ex-
pect to have two arbitrary constants that must be determined by initial con-
ditions and normalization, and we see that since the recursion formula re-
lates every second coefficient, we need to specify both a0 and a1 to be able
to generate all the coefficients. If we start off with a0 we get all the even
coefficients:

a2 =
1− ε

2
a0 (14)

a4 =
5− ε
12

a2 =
(5− ε)(1− ε)

24
a0 (15)

. . . (16)

There is a similar sequence of calculations for the odd coefficients start-
ing with a1.

That’s about as far as we can go without using some external information
to put some conditions on the series. As usual, we require the solution (the
original solution, that is, ψ) to be normalizable. We now know that this
solution has the form

ψ(y) = e−y2/2f(y) (17)

= e−y2/2
∞

∑
j=0

ajy
j (18)

So in order to be normalizable, the series will have to converge to some
function that doesn’t expand to infinity as fast as ey

2/2. Otherwise the series
term will kill off the negative exponential, and the overall wave function
will not tend to zero as y goes to infinity.

This seems like a difficult condition to check, but let’s have a look at the
asymptotic behaviour (for large j) of the recursion formula 13.
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aj+2 =
2j+1− ε

(j+1)(j+2)
aj (19)

=
2j+1− ε
j2 +3j+2

aj (20)

∼ 2
j
aj (21)

Thus the ratio of two successive even terms (or two successive odd terms)
in the series is

aj+2y
j+2

ajyj
=

2
j
y2 (22)

How does this compare with the series for an exponential function?
The Taylor series for ex

2
is

ex
2

=
∞

∑
j=0

x2j

j!
(23)

=
∞

∑
j even

xj

(j/2)!
(24)

The ratio of two successive terms from this series is

xj+2/((j+2)/2)!
xj/(j/2)!

=
2

j+2
x2 (25)

which for large j is essentially the same as relation 22. And this is for only
half (either even or odd terms) of the series; the other half will contribute
another function of roughly equal size. Thus it looks like the series’ asymp-
totic behaviour is that of ey

2
so the overall behaviour of the wave function

is ey
2
e−y2/2 = ey

2/2, which diverges and is therefore not normalizable.
This looks like a serious problem, but there is in fact a way out: if the

series terminates after a finite number of terms, then the behaviour is that
of a polynomial rather than an exponential, and multiplying any polynomial
by e−y2/2 will always give a normalizable function.

So if we can arrange things so that the recursion formula 13 gives aj+2 =
0 for some j, then clearly all further terms will be zero. The condition to be
satisfied is therefore
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2j+1− ε = 0 (26)
ε = 2j+1 (27)

E =
1
2
h̄ω(2j+1) (28)

where j is some integer 0, 1, 2, 3, ... Note however, that each choice of j,
that is, each choice of where the series terminates, gives a different value for
the energy. The lowest possible energy for the harmonic oscillator is when
j = 0, and is E0 =

1
2 h̄ω and the energies increase at regular intervals of h̄ω

so the energy levels are all equally spaced.
It is more usual to give the energy formula as

En =

(
n+

1
2

)
h̄ω (29)

with n=0, 1, 2, 3, 4,
One note of caution here. Once we have chosen an energy level, this fixes

the value of j at which the series terminates. If j is even, then the odd series
must be zero right from the start, and vice versa. There is no way of getting
both the even and odd series to terminate at some intermediate values in the
same solution. So if we choose an even value of j we must have a1 = 0 to
remove all the odd terms from the sum, and conversely if we choose j to be
odd, we must have a0 = 0 to remove all the even terms.

The stationary states for the harmonic oscillator are therefore products
of polynomials and the exponential factor. The polynomials turn out to be
well-studied in mathematics and are known as Hermite polynomials. We
will explore their properties in another post.

To summarize the behaviour of the quantum harmonic oscillator, we’ll
list a few points.

(1) The harmonic oscillator potential is parabolic, and goes to infinity
at infinite distance, so all states are bound states - there is no energy
a particle can have that will allow it to be free.

(2) The energies are equally spaced, with spacing h̄ω.
(3) The lowest energy is the ground state E0 = h̄ω/2, so a particle al-

ways has positive, non-zero energy.
(4) The stationary states consist of either an even or an odd polynomial

function multiplied by e−y2/2 = e−mωx2/2h̄ which is always even.
Thus a stationary state is either an even or an odd function of y (and
hence of x).
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(5) The polynomial functions in the stationary states are Hermite poly-
nomials.
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