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We’ve seen that we can solve the three-dimensional Schrödinger equa-

tion by separation of variables, provided that the potential is a function of
r only. In that case, the angular parts of the equation can be solved in gen-
eral in terms of spherical harmonics, so the wave function has the form
ψ(r,θ,φ) = R(r)Y (θ,φ), where the Y functions are the spherical harmon-
ics, and R(r) is the, as yet unsolved, radial function, which satisfies the
differential equation
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By making the further substitution

u(r)≡ rR (2)

we can convert the above equation into a differential equation for u(r):
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This equation has the same form as the original Schrödinger equation
except that the potential has picked up an extra so-called centrifugal term.
We must now solve this equation when V (r) is the potential found in the
hydrogen atom.

The hydrogen atom consists of a proton and an electron. The proton is,
in the first approximation, taken to be fixed, since its mass is more than a
thousand times that of the electron. The force between the two particles
can be taken as solely electric, since the gravitational force is many orders
of magnitude smaller and will have essentially no effect. In this case, the
potential is

V (r) =− e2

4πε0

1
r

(4)
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where e is the elementary charge and 1/4πε0 is the Coulomb constant. The
equation to be solved is thus:
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The solution of this equation follows a similar method as was used in
solving the harmonic oscillator. We first investigate the asymptotic be-
haviour of the equation for large and small r, factor out this behaviour and
then use a series to try to find the solution of what’s left.

First, we can introduce a couple of symbol changes. If we define

κ≡
√
−2mE
h̄

(6)

(note that since E < 0 for bound states, κ is real), then we can rewrite 5 as
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Since r occurs always multiplied by κ, we can try using a new variable

ρ≡ κr (8)

and this results in
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We can simplify the notation a bit more by defining a constant

ρ0 ≡
me2

2πε0h̄
2κ

(10)

giving us the equation
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1− ρ0

ρ
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Now we can investigate the asymptotic behaviour. First, for large ρ, the
two terms in the brackets that depend inversely on ρ become negligible, so
we get in this limit:

d2u

dρ2 = u (12)
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This has the general solution

u= Ae−ρ+Beρ (13)

and only the first term is acceptable, since the term Beρ becomes infinite
for large ρ. So for large ρ, we must have

u(ρ)∼ Ae−ρ (14)
At the other end, when ρ is very small, the term in ρ−2 becomes the

largest, so the approximate equation to solve is

d2u

dρ2 =
l(l+1)
ρ2 u (15)

[This argument fails if l = 0, but all we’re after here is looking at as-
ymptotic behaviour in an attempt to factor this behaviour out of the overall
solution. As we’ll see when we finally get the solution, it is valid for l = 0
as well.]

In this case, the general solution is

u(ρ) = Cρl+1 +Dρ−l (16)
This can be verified by direct substitution:

d2u

dρ2 = Cl(l+1)ρl−1 +D(−l)(−l−1)ρ−l−2 (17)

=
l(l+1)
ρ2 u (18)

In this case, the term Dρ−l becomes infinite as ρ→ 0, so D = 0 and

u(ρ)∼ Cρl+1 (19)
So now we know the behaviours at the two extremes, and we can factor

both of these out, hoping to solve for what is left over. That is, we can write

u(ρ) = ρl+1e−ρv(ρ) (20)

where v(ρ) is what we must find. Note that we have absorbed the two
constants A and C into v(ρ).

The idea is to plug 20 back into 11 and see what sort of equation we get
for v(ρ) as a result. We need the second derivative of u in terms of v. We
need to use the product rule a few times to get it.
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Plugging this back into 11 and collecting terms we get
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ρ
d2v

dρ2 +2(l+1−ρ)dv
dρ
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This version of the differential equation may not look any friendlier than
the original, but we can now try to solve it by expressing v(ρ) as a series in
ρ, which we will do in the next post.
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