EXPLICIT SOLUTIONS OF DIRAC EQUATION FROM PARTICLE'S REST FRAME

Link to: physicspages home page.

To leave a comment or report an error, please use the auxiliary blog.

Post date: 15 June 2018.

References: Amitabha Lahiri & P. B. Pal, *A First Book of Quantum Field Theory*, Second Edition (Alpha Science International, 2004) - Chapter 4, Problem 4.12.

The solution of the Dirac equation for a free particle is

$$\psi(x) \sim \begin{cases} u_s(\mathbf{p}) e^{-ip \cdot x} \\ v_s(\mathbf{p}) e^{ip \cdot x} \end{cases}$$
 (1)

where u_s and v_s are 4-component spinors and s=+ or -. These spinors satisfy

$$\left(p - m \right) u_s \left(\mathbf{p} \right) = 0 \tag{2}$$

$$\left(p + m \right) v_s(\mathbf{p}) = 0 \tag{3}$$

To find explicit forms for the spinors, we need an explicit representation of the gamma matrices. One such representation is the Dirac-Pauli representation in which the matrices are given by

$$\gamma^0 = \left[\begin{array}{cc} I & 0 \\ 0 & -I \end{array} \right] \tag{4}$$

$$\gamma^i = \left[\begin{array}{cc} 0 & \sigma^i \\ -\sigma^i & 0 \end{array} \right] \tag{5}$$

where the σ^i are the Pauli matrices

$$\sigma^{1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}; \quad \sigma^{2} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}; \quad \sigma^{3} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 (6)

Each of the entries in 4 and 5 is a 2×2 matrix, while the entries in the Pauli matrices are ordinary numbers. The four-vector p has the general form

$$p = (E_p, \mathbf{p}) \tag{7}$$

where

$$E_p = \sqrt{\mathbf{p}^2 + m^2} \tag{8}$$

Earlier, we saw how to obtain explicit solutions for the Dirac spinors using these equations. Here we look at an alternative derivation. In the particle's rest frame $\mathbf{p} = 0$ and $E_p = m$, and we can choose the following spinors as solutions:

$$u_{+}(\mathbf{0}) = \sqrt{2m} \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$$
 (9)

$$u_{-}(\mathbf{0}) = \sqrt{2m} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \tag{10}$$

$$v_{+}(\mathbf{0}) = \sqrt{2m} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \tag{11}$$

$$v_{-}(\mathbf{0}) = \sqrt{2m} \begin{bmatrix} 0 \\ 0 \\ -1 \\ 0 \end{bmatrix}$$
 (12)

These spinors satisfy the normalization condition for a particle at rest:

$$u_r^{\dagger}(\mathbf{p}) u_s(\mathbf{p}) = v_r^{\dagger}(\mathbf{p}) v_s(\mathbf{p}) = 2E_p \delta_{rs} = 2m \delta_{rs}$$
 (13)

We can use these solutions to generate the solutions for arbitrary 3-momentum **p** by showing that $(p+m)u_{\pm}(0)$ is a solution of 2 and $(p-m)v_{\pm}(0)$ is a solution to 3. We can do this by direct substitution, but first we need the result for two four-vectors a and b:

$$\phi b = \gamma^{\mu} a_{\mu} \gamma^{\nu} b_{\nu} \tag{14}$$

$$= \gamma^{\mu} \gamma^{\nu} a_{\mu} b_{\nu} \tag{15}$$

$$= (2g^{\mu\nu} - \gamma^{\nu}\gamma^{\mu}) a_{\mu}b_{\nu} \tag{16}$$

$$=2a^{\mu}b_{\mu}-\not b\not a \tag{17}$$

In the particular case where a = b we have

$$\phi \phi = a^{\mu} a_{\mu} = a^2 \tag{18}$$

We now have from 2

$$(\not p - m) (\not p + m) u_{\pm}(\mathbf{0}) = (\not p \not p - m^2) u_{\pm}(\mathbf{0})$$
(19)

$$= \left(p^2 - m^2\right) u_{\pm}(\mathbf{0}) \tag{20}$$

$$=0 (21)$$

where the last line follows because, for $\mathbf{p} = 0$, $p^2 = m^2$.

Pauli representation. We've seen that, in this representation

$$p - m = \gamma_0 E_p - \gamma \cdot \mathbf{p} - mI \tag{22}$$

$$= \begin{bmatrix} E_p - m & -\sigma \cdot \mathbf{p} \\ \sigma \cdot \mathbf{p} & -E_p - m \end{bmatrix}$$
 (23)

so we also have

Each entry in these matrices is itself a

 2×2 matrix.

$$\mathbf{p} + m = \gamma_0 E_p - \gamma \cdot \mathbf{p} + mI$$

$$= \begin{bmatrix} E_p + m & -\sigma \cdot \mathbf{p} \\ \sigma \cdot \mathbf{p} & -E_p + m \end{bmatrix}$$
(24)

Therefore we have

$$(\not p+m) u_{+}(\mathbf{0}) = B \begin{bmatrix} E_{p}+m \\ 0 \\ (\sigma \cdot \mathbf{p})_{11} \\ (\sigma \cdot \mathbf{p})_{21} \end{bmatrix}$$

$$(26)$$

$$(\not p+m) u_{-}(\mathbf{0}) = B \begin{bmatrix} 0 \\ E_{p}+m \\ (\sigma \cdot \mathbf{p})_{12} \\ (\sigma \cdot \mathbf{p})_{22} \end{bmatrix}$$

$$(27)$$

$$(\not p + m) u_{-}(\mathbf{0}) = B \begin{bmatrix} 0 \\ E_p + m \\ (\sigma \cdot \mathbf{p})_{12} \\ (\sigma \cdot \mathbf{p})_{22} \end{bmatrix}$$
(27)

where BS is a normalization constant. To compare these with the solutions found earlier, we note that

$$\sigma \cdot \mathbf{p} = \begin{bmatrix} p^3 & p^1 - ip^2 \\ p^1 + ip^2 & -p^3 \end{bmatrix}$$
 (28)

and the earlier solutions were

$$u_{\pm}(\mathbf{p}) = \sqrt{E_p + m} \left[\begin{array}{c} \chi_{\pm} \\ \frac{\sigma \cdot \mathbf{p}}{E_p + m} \chi_{\pm} \end{array} \right]$$
 (29)

with

$$\chi_{+} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \tag{30}$$

$$\chi_{-} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \tag{31}$$

Thus our present solutions 26 match the earlier ones if the momentum is $\mathbf{p} = (0, 0, p^3)$, that is, it's entirely along the z direction, and we normalize the solutions correctly.

We can make the solutions match if we write

$$u_{+}(\mathbf{0}) = \sqrt{2m} \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} = \sqrt{2m} \begin{bmatrix} \chi_{+}\\0 \end{bmatrix}$$
 (32)

where each entry on the RHS is now a 2-component column vector. If we now apply 25 to this and multiply the elements as though they are single matrix elements, we get

$$(\not p + m) u_{+}(\mathbf{0}) = B \begin{bmatrix} (E_p + m) \chi_{+} \\ \sigma \cdot \mathbf{p} \chi_{+} \end{bmatrix}$$
(33)

which matches 29, after normalization. I'm not sure this is allowable, however.

We can do a similar calculation to get v_{\pm} :

$$(\not p+m)(\not p-m)v_+(\mathbf{0}) = (\not p\not p-m^2)v_+(\mathbf{0})$$
(34)

$$= \left(p^2 - m^2\right) v_{\pm}\left(\mathbf{0}\right) \tag{35}$$

$$=0 (36)$$

Therefore

$$(\not p - m) v_{+}(\mathbf{0}) = B \begin{bmatrix} E_{p} - m & -\sigma \cdot \mathbf{p} \\ \sigma \cdot \mathbf{p} & -E_{p} - m \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \chi_{-} \end{bmatrix}$$
(37)

$$= -B \begin{bmatrix} \sigma \cdot \mathbf{p}\chi_{-} \\ (E_{p} + m)\chi_{-} \end{bmatrix}$$
 (38)

$$(\not p - m) v_{-}(\mathbf{0}) = B \begin{bmatrix} E_p - m & -\sigma \cdot \mathbf{p} \\ \sigma \cdot \mathbf{p} & -E_p - m \end{bmatrix} \begin{bmatrix} 0 \\ -\chi_{+} \end{bmatrix}$$
(39)

$$= B \left[\begin{array}{c} \sigma \cdot \mathbf{p} \chi_{+} \\ (E_{p} + m) \chi_{+} \end{array} \right] \tag{40}$$

These again agree with the earlier solutions after proper normalization:

$$v_{\pm}(\mathbf{p}) = \pm \sqrt{E_p + m} \begin{bmatrix} \frac{\sigma \cdot \mathbf{p}}{E_p + m} \chi_{\mp} \\ \chi_{\mp} \end{bmatrix}$$
 (41)

PINGBACKS

Pingback: Energy projection operators in the Dirac equation Pingback: Spin projection operators in the Dirac equation

Pingback: Spin projection operators in the Dirac equation for a particle

at rest