PROPAGATOR FOR THE DIRAC FIELD

Link to: physicspages home page.

To leave a comment or report an error, please use the auxiliary blog.

Post date: 29 June 2018.

References: Amitabha Lahiri & P. B. Pal, A First Book of Quantum Field Theory, Second Edition (Alpha Science International, 2004) - Chapter 4, Problem 4.29.

The propagator for the Dirac field is derived using similar logic to that for the scalar field. The Dirac equation is coupled to a source term:

Note that J(x) is not angular momentum in this context.

$$(i\gamma^{\mu}\partial_{\mu} - m)\psi(x) = J(x) \tag{1}$$

The Dirac propagator S is defined by the equation

$$(i\gamma^{\mu}\partial_{\mu} - m)S(x - x') = \delta^{4}(x - x')$$
(2)

so the general solution of the Dirac equation is then

$$\psi(x) = \psi_0(x) + \int d^4x \, S\left(x - x'\right) J\left(x'\right) \tag{3}$$

The crucial difference between the Dirac case and the scalar field is that here, ψ and J are 4-component vectors and S is a 4×4 matrix. Thus the RHS of 2 is implicity multiplied by the unit matrix I.

Taking a Fourier transform we get

$$S(x-x') = \int \frac{d^4p}{(2\pi)^4} e^{-ip\cdot(x-x')} S(p)$$
(4)

From 2, we have

$$(i\partial \!\!\!/ - m) S(x - x') = \int \frac{d^4p}{(2\pi)^4} (i(-i\not p) - m) e^{-ip \cdot (x - x')} S(p)$$
 (5)

$$= \int \frac{d^4p}{(2\pi)^4} \left(\not p - m \right) e^{-ip \cdot (x - x')} S\left(p \right) \tag{6}$$

Since

$$\delta^{4}(x-x') = \int \frac{d^{4}p}{(2\pi)^{4}} e^{-ip\cdot(x-x')}$$
 (7)

if we require the RHS of 6 to be $\delta^4(x-x')$ we must have

$$\left(p - m \right) S\left(p \right) = 1 \tag{8}$$

Multiplying both sides by p + m we have

$$(p^2 - m^2) S(p) = \not p + m \tag{9}$$

$$S(p) = \frac{p + m}{p^2 - m^2} \tag{10}$$

When doing the integral over p^0 in 6, this denominator has poles at $p^0=\pm E_p=\pm \sqrt{{\bf p}^2+m^2}$, just as in the scalar field case, so we use the same fix here by introducing an infinitesimal imaginary part to the denominator:

$$S_F(p) = \frac{p + m}{p^2 - m^2 + i\varepsilon} \tag{11}$$

 S_F is called the Feynman propagator. With this alteration, 4 becomes

$$S_F(x-x') = \int \frac{d^4p}{(2\pi)^4} e^{-ip\cdot(x-x')} \frac{p + m}{p^2 - m^2 + i\varepsilon}$$
 (12)

Using the propagator for scalar fields that we found earlier:

$$\Delta_F(x-x') = \int \frac{d^4p}{(2\pi)^4} \frac{e^{-ip\cdot(x-x')}}{p^2 - m^2 + i\varepsilon}$$
(13)

we can write 12 as

$$S_F(x-x') = (i\partial \!\!\!/ + m) \Delta_F(x-x') \tag{14}$$

We can use the result, obtained by doing the integral over p^0 , given in L&P's eqn 3.76, which is:

$$i\Delta_F(x-x') = \int \frac{d^3p}{(2\pi)^3 2E_p} \left[\Theta(t-t') e^{-ip\cdot(x-x')} + \Theta(t'-t) e^{ip\cdot(x-x')} \right]$$
(15)

Applying the operator $i\partial \!\!\!/ + m$ to this gives us

$$iS_F\left(x-x'\right) = \int \frac{d^3p}{\left(2\pi\right)^3 2E_p} \left[\Theta\left(t-t'\right)\left(\not p+m\right) e^{-ip\cdot(x-x')} + \right]$$
(16)

$$\Theta(t'-t)(-p+m)e^{ip\cdot(x-x')}$$
(17)

$$= \int \frac{d^3p}{(2\pi)^3 2E_p} \left[\Theta \left(t - t' \right) \left(\not p + m \right) e^{-ip \cdot (x - x')} - \right]$$
 (18)

$$\Theta(t'-t)(\not p-m)e^{ip\cdot(x-x')}$$
(19)

Here $\Theta(t-t')$ is the step function which is zero for t < t' and 1 for t > t'.

PINGBACKS

Pingback: Propagator for the Dirac field as a time-ordered product