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We’ve seen that the time-ordered product of two fields can be written in
terms of a normal-ordered product and a contraction. This is a special case
of Wick’s theorem, applied to two fields:
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where the Wick contraction is a shorthand notation for the matrix element
of a time-ordered product in the vacuum state:〈

0
∣∣T [
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〉
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(2)

In their exercise 5.4, L&P ask us to prove the general form of Wick’s
theorem using induction. The general theorem can be written as (here I’m
using the notation in Greiner & Reinhardt (G&R), although I’ve left the hats
off the operators, as all captial letters are operators here):

T [ABC .. .XY Z] =:ABC .. .XY Z: + (3)
:ABC .. .XY Z: + (4)

:ABC .. .XY Z: + (5)

:ABC .. .XY Z: + (6)

:ABCD.. .XY Z: + (7)

:ABCD.. .XY Z: (8)

:ABC .. .WXY Z: + (9)

all higher order contractions (10)

The first line is the normal-ordered product of all the operators, with no con-
tractions. The next 3 lines contain all possible single contractions between 2
operators, with the remaining uncontracted operators being normal-ordered.
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Note that since a contraction is just a number (a matrix element), it can be
taken outside the normal ordering. Also, for scalar field operators φ1 and
φ2:

T [φ1φ2] = T [φ2φ1] (11)
:φ1φ2: =:φ2φ1: (12)

However, for fermion field operators ψ1 and ψ2, because of the anticommu-
tation relations, we have

T [ψ1ψ2] =−T [ψ2ψ1] (13)
:ψ1ψ2: =− :ψ2ψ1: (14)

As a consequence of these relations, we have the general identity

:ABCDEF .. .KLM .. .:= ε :ABF .. .KM .. .: CEDL (15)

That is, we can take contractions of two operators that are separated by
other operators in a normal product outside the normal product, but only
if we commute the operators in the contraction through the other operators
until they are adjacent. In doing these commutations, we need to factor
in the appropriate sign change if the two operators being commuted are
fermion operators. The factor ε on the RHS is thus ±1 depending on the
number of fermion commutations we had to do.

We can see that 1 is a special case of 3 for two fields. The problem is to
prove 3 by induction, using 1 as the anchor step. That is, we assume that
3 is true for n operators and then prove from this that it is true for n+ 1
operators.

I have to admit that with no more information than what is given in L&P,
it would have taken me a long time (if ever) to arrive at such a proof. Fortu-
nately, the proof given in G&R is quite clear, so I’ll run through that here.

The first step is to prove a lemma. Given a set A,B, . . . ,Y,Z of linear
operators (G&R state that these are ’time-independent’ but I don’t see how
they can be if we are to time-order them) with the conditions that

(1) The time argument ofZ is smaller than that of all the other operators
A,B, . . . ,Y .

(2) Z is a creation operator.
(3) All the other operators A,B, . . . ,Y are annihilation operators.

Then we must show that
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:AB .. .XY : Z =:AB .. .XY Z: + :AB .. .XY Z: + . . . (16)

:AB .. .XY Z: + (17)

:AB .. .XY Z: (18)

That is, if we take a normal ordered product of operators and multiply it
on the right by another operator Z, the result is the normal ordered product
of all the operators plus all possible contractions of the existing operators
A,B, . . . ,X,Y with the new operator Z.

First, we need to comment on a couple of the restrictions imposed above.
With respect to assumption 2 (Z being a creation operator), suppose this
isn’t true, and that Z = Z++Z− where Z+ is an annihilation operator and
Z− is a creation operator. Then for Z+ the LHS of 16 is automatically true,
since normal ordering places annihilation operators on the right. The RHS,
any contraction involving Z+ will be of the form

AZ+ = 〈0 |T [AZ+]|0〉 (19)

= 〈0 |AZ+|0〉 (20)
= 0 (21)

The second line follows from the fact that tZ < tA (assumption 1 above),
which the last line follows because Z+ is an annihilation operator acting on
the vacuum, which is zero. Thus adding in an annihilation component to Z
will make no difference to 16.

Now with respect to assumption 3 (A,B, . . . ,Y are annihilation opera-
tors), again, suppose that some of these operators have a creation compo-
nent. Then on the LHS of 16, all these components will lie to the left of the
annihilation components. On the RHS, the extra contractions introduced
will consist of contractions between a creation component of one of the
operators, say O−, with Z− (since we know that Z can be taken to be a
creation operator). That is, we have contractions of the form

O−Z− = 〈0 |T [O−Z−]|0〉 (22)

= 〈0 |O−Z−|0〉 (23)
= 0 (24)

Again, the second line follows because tZ < tO, and the last line follows
because we have a creation operator O− acting to the left on a vacuum bra,
which is always zero.
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Thus the assumptions 2 and 3 above don’t limit the generality of the
proof, which we now derive.

To begin the induction, suppose that 16 is true for a product BC .. .XY
of annihilation operators and a creation operator Z. That is, we assume that

:B .. .XY : Z =:B .. .XY Z: + :BC .. .XY Z: + . . . (25)

:B .. .XY Z: (26)

Now multiply on the left by an annihilation operatorAwith a time greater
than tZ . We get

A :B .. .XY : Z = A :B .. .XY Z: + :ABC .. .XY Z: + . . . (27)

:AB .. .XY Z: (28)

In the first term on the RHS, we can’t put A inside the normal order
because the operators as listed inside the normal ordering signs are not in
normal order themselves (because Z is a creation operator and appears on
the right). In the remaining terms, Z appears only within a contraction and
is thus converted into an ordinary number, so in these terms it is valid to
place A inside the normal ordering.

Now consider the first term on the RHS. We would like to show that

A :B .. .XY Z: = :AB .. .XY Z: + :ABC .. .XY Z: (29)

That is, the term on the LHS is equal to a full normal ordering of all the
operators plus the extra contraction of the new operator A with the creation
operator Z.

First, we can commute the Z in the LHS so it lies at the start of the nor-
mal ordering. Depending on the presence of fermion operators, this might
introduce a sign, so we’ll multiply by ε=±1 to account for this:

A :B .. .XY Z:= εAZBC .. .XY (30)

Note that the product on the RHS is not normal ordered, since the creation
operator Z is still to the right of the new annihilation operator A. Now we
can apply Wick’s theorem for 2 fields 1 to the product AZ:

AZ = T [AZ] = :AZ: +AZ (31)

Inserting this into 30 we have

A :B .. .XY Z:= ε :AZ: :BC .. .Y : +εAZ :BC .. .Y : (32)
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In the first term, we have, since Z is the only creation operator so it must
be leftmost in a normal ordering (and commuting it with A could introduce
a minus sign):

:AZ: :BC .. .Y : =±ZABC .. .Y (33)
=± :ZABC .. .Y : (34)

Now we can commute Z back to the right-hand end. Doing this will
cancel the sign just introduced when it commutes with A. The remaining
commutes with B through Y will introduce the factor ε again, so we have

± :ZABC .. .Y : =:AZBC .. .Y : (35)
= ε :ABC .. .Y Z: (36)

Inserting this into 32 we get

A :B .. .XY Z: = ε2 :ABC .. .Y Z: +εAZ :BC .. .Y : (37)

=:ABC .. .Y Z: +εAZ :BC .. .Y : (38)

since ε2 = (±1)2 = 1.
For the last term, we need to commute the Z in the contraction AZ back

to the right-hand end of the product. We can use 15 to do this, and we
see that a factor of ε = ±1 gets introduced as the Z commutes through the
product. The crucial point is that this ε is the same factor as that in 38 since
it is obtained by the same sequence of commutations. Therefore

AZ :BC .. .Y := ε :ABC .. .Y Z: (39)

Placing this in 38 we get finally

A :B .. .XY Z: =:ABC .. .Y Z: +ε2 :ABC .. .Y Z: (40)

=:ABC .. .Y Z: + :ABC .. .Y Z: (41)

This matches equation 29, so the lemma 16 is now proved.
Notice that the same proof applies if some of the operators in the orig-

inal product in the LHS of 16 are contracted. These contractions are just
numbers and can be extracted from the product of the remaining operators
using 15 (possibly with a factor of ε=±1). The same steps can be followed
and the contractions reinserted into the correct order at the end (generating
another factor of ε which cancels the first one).

From here, it’s a fairly short step to the general Wick’s theorem. We
know that it is true for two fields, as in 1 and that this is a special case of
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the proposed general formula 3. Therefore, let’s assume that 3 is true for
a time-ordered product AB .. .XY and then multiply the result by a new
operator Z on the right. That is we start by assuming that

T [AB .. .XY ] = :AB .. .XY : + :AB .. .XY : + (42)

+ :ABCD.. .XY : + . . . (43)

By assumption 1 above, the time tZ is less than the times of all the other
operators, so for the LHS we have

T [AB .. .XY ]Z = T [AB .. .XY Z] (44)
On the RHS, we can apply the lemma to each term in the expansion. In
doing this, we see that for each term on the RHS of 42, multiplying on
the right by Z will produce a sum of terms consisting of a normal ordered
product of all uncontracted operators, plus a sum of terms which consist of
a normal ordered product in which each operator that was uncontracted in
the original term is contracted, in turn, with the new operator Z. Thus the
final result is the general Wick’s theorem 3.

As G&R point out at the end of their proof, assumption 1 (that tZ is the
smallest time) above doesn’t affect the generality of the proof, since if the
original operators are not in decreasing order of time, we can permute them
on both sides of the equation so that they are. This introduces the same
sign factor ε on both sides, after which we can follow the same steps in the
proof. At the end of the calculation, we can reverse the permutation so that
the operators are in their original order, which introduces another factor of
ε, cancelling the first one.
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