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The regular Fourier transform of a function f (t) is defined by

F (ω)≡
ˆ

∞

−∞

f (t)e−iωtdt (1)

where ω is the angular frequency if f (t) is a function of time. In any real-
life experiment, of course, we will get only a finite number of measurements
of f , so we can’t compute the Fourier transform exactly. In such situations,
we can use the discrete Fourier transform to get an estimate of the frequency
spectrum F (ω). The idea is that we make a series of N measurements at
equally spaced intervals of T per interval, with the first measurement at
t= 0 and the last at t= (N −1)T . We then assume that the function we’re
sampling is periodic, repeating its pattern over time intervals outside those
in which we made measurements. That is, the values of f for t = Nt up
to t= (2N −1) t repeat those from t= 0 to t= (N −1) t. In that case, we
can calculate the Fourier transform by integrating over the single cycle for
which we have data:

F (ω) =

ˆ (N−1)T

0
f (t)e−iωtdt (2)

Of course, we still have data only for the N discrete times at which we
made measurements, so we now make the approximation that f is constant
over each interval T . The transform then becomes

F (ω)≈
N−1

∑
k=0

fke
−iωkT (3)

Since we’re treating the data as periodic with period NT , we can look
for frequencies equal to 1

NT Hz = 2π
NT s−1 and higher harmonics (multiples

of the fundamental frequency). We could also have a constant component
in the data, so we’ll include ω = 0 as well. That is, we work out the sum 3
for all values of ω = 0, 2π

NT ,2
2π
NT ,3

2π
NT , . . . ,(N −1) 2π

NT . The final formula
for the discrete Fourier transform is thus
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Fn =
N−1

∑
k=0

fke
−i2πnk/N (4)

for n= 0,1, . . . ,N −1.
The inverse transform is given by

fk =
1
N

N−1

∑
n=0

Fne
i2πnk/N (5)

To see this, substitute 5 back into 4 for Fm:

Fm =
N−1

∑
k=0

fke
−i2πmk/N =

1
N

N−1

∑
k=0

N−1

∑
n=0

Fne
i2πnk/Ne−i2πmk/N (6)

=
1
N

N−1

∑
n=0

Fn
N−1

∑
k=0

ei2π(n−m)k/N (7)

The sum over k is N if n=m. If n 6=m we have a geometric series:

N−1

∑
k=0

ei2π(n−m)k/N =
N−1

∑
k=0

xk (8)

where

x≡ ei2π(n−m)/N (9)
The sum of a geometric series (found in most calculus textbooks) is

N−1

∑
k=0

xk =
1−xN

1−x
(10)

so we get

N−1

∑
k=0

ei2π(n−m)k/N =
1− ei2π(n−m)

1− ei2π(n−m)/N
(11)

= 0 (12)

since n−m is an integer, so ei2π(n−m) = 1 in the numerator. Therefore

N−1

∑
k=0

ei2π(n−m)k/N =Nδnm (13)
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Returning to 7 we get

N−1

∑
k=0

fke
−i2πnk/N =

N−1

∑
n=0

Fnδnm = Fm (14)

which shows that 5 is indeed the inverse transform.
The transform 4 can be written as a matrix equation. For example, if

N = 4, we have
F0
F1
F2
F3

=


1 1 1 1
1 W W 2 W 3

1 W 2 W 4 W 6

1 W 3 W 6 W 9



f0
f1
f2
f3

 (15)

where

W ≡ e−i2π/N (16)
The matrix is symmetric, but we can also decrease the number of matrix

elements we need to calculate by noting thatWN = e−i2π = 1, soW 6 =W 2

and W 9 =W 5 =W :
F0
F1
F2
F3

=


1 1 1 1
1 W W 2 W 3

1 W 2 1 W 2

1 W 3 W 2 W



f0
f1
f2
f3

 (17)

In most applications, the original data fk are real, which allows us to
derive a relation among the transform elements Fn.

FN−n =
N−1

∑
k=0

fke
−i2π(N−n)k/N (18)

=
N−1

∑
k=0

fke
−i2πkei2πnk/N (19)

=
N−1

∑
k=0

fke
i2πnk/N (20)

= F ∗n (21)

where in line 2, since k is an integer, e−i2πk = 1. Therefore, both FN−n and
Fn contribute to the same frequency component n. From 5 we can get this
frequency component fk,n:
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fk,n =
1
N

[
Fne

i2πnk/N +F ∗ne
i2π(N−n)k/N

]
(22)

=
1
N

[
Fne

i2πnk/N +F ∗ne
−i2πnk/N

]
(23)

The second term in the sum is the complex conjugate of the first (which
it would have to be, if fk,n is to be real). We can write the first term in
modulus-argument form as

Fne
i2πnk/N = |Fn|ei(2πnk/N+φ) (24)

where φ is the argument of Fn. Therefore

fk,n = 2
|Fn|
N

cos
(

2πnk
N

+φ

)
(25)

= 2
|Fn|
N

cos
(

2πn
NT

kT +φ

)
(26)

The original data point fk is the measurement taken at t= kT , so we can
see that the contribution from component Fn is a sine wave with frequency
ω = 2πn

NT , phase φ and amplitude 2 |Fn|
N .

There are a couple of special cases. First, if n=N−n= N
2 then there is

only one frequency component that contributes so

fk,N2
=
|Fn|
N

cos
(

2πn
NT

kT +φ

)
(27)

Second, for n= 0 we get from 5

fk,0 =
F0

N
(28)

Example 1. Suppose the data are drawn from the function

f (t) = 3+ cos(πt)+ sin(πt) (29)

Taking T = 1
2 we get

k fk
0 4
1 4
2 2
3 2

We get
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W = e−iπ/2 =−i (30)

The transform is


F0
F1
F2
F3

 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




4
4
2
2

 (31)

=


12

2−2i
0

2+2i

 (32)

The constant component is

F0

N
= 3 (33)

For n= 1, ω = 2πn/NT = π and

φ = arg(2−2i) =−π
4

(34)

fk,1 = 2
|F1|
N

(35)

=
√

2 (36)

So the component with ω = π is

√
2cos

(
πt− π

4

)
=
√

2
(

cosπtcos
π

4
+ sinπtsin

π

4

)
(37)

= cos(πt)+ sin(πt) (38)

So we do actually get back the exact original function.

Example 2. As you might expect, if the sampling interval gets close to (or,
worse, exceeds) the actual periods in the data, the method breaks down. If
we tried

f (t) = 3+ cos(2πt)+ sin(4πt) (39)

but kept the sampling interval the same, at T = 1
2 , then we get
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k fk
0 4
1 2
2 4
3 2

The transform is


F0
F1
F2
F3

 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




4
2
4
2

 (40)

=


12
0
4
0

 (41)

The constant component is

F0

N
= 3 (42)

so that’s still ok. For n= 1, ω = 2πn/NT = π and

φ = arg(0) = 0 (43)

fk,1 = 2
|F1|
N

(44)

= 0 (45)

so there is no component with ω = π, which is also ok.
For n= 2, we get from 27

φ = arg(F2) = 0 (46)

fk,2 =
|F2|
N

(47)

= 1 (48)

so we reclaim the cos(2ωt) term. However, there is no way to recover
the sin(4ωt) term since our sampling intervals all hit values of t where
sin(4ωt) = 0, so it’s as if this term didn’t exist.
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