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As another application of the principle of least action we will look at a
vibrating string. Suppose we have a string stretched between two points so
that its tension is 7. If we pluck the string so that it starts vibrating, then at
a point x on the line connecting the points to which the ends of the string are
joined, the displacement from equilibrium of a point on the string is given
by v (x,¢). Assuming that a point on the string can move only up and down
(that is, perpendicular to the line joining the ends), then the kinetic energy
of a segment of length dx is (given that the string’s linear density is p):
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To get the potential energy, we can use the following argument. If a
segment of length dx is displaced from equilibrium by a distance d y by the
action of the tension 7, then the stretched length of that segment is
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to first order in dx. The work done to stretch the string is the force 7 times
the distance stretched, which is ds — dx so the work done, which is equal to
the potential energy, is
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We can now introduce the Lagrangian density (effectively, the Lagrangian
per unit length):
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The action can now be written as
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To minimize the action we now have to consider a functional that depends
on a function of two independent variables. That is, we have
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where
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We can generalize the original definition of a functional derivative by
considering a variation of the function y at one point (xg,%y), that is
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To see how this works, consider the slightly simpler case where the func-
tion £ depends only on y and not on its derivatives. Then
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where we used a Taylor expansion of the first line up to first order to get the
second line.

To extend this to the more general case where £ = L (y, 0y, 0, y) we
can follow example 2 in this earlier post to get
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Applying this to 4] we get
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The final equation is just the wave equation that we derived earlier when
studying electromagnetic waves.

We can generalize this to a three-dimensionsal elastic medium by taking
v (x,y,z,t) = y(r,t) to be a three-dimensional scalar field (actually, it’s
not clear exactly what y represents in this case; in the ’real’ theory of 3-d
elasticity, the displacement of an element of the elastic medium is a vector
field, not a scalar field, as you would expect). We can generalize the idea of
a Lagrangian density to three dimensions, so we have
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The principle of least action is now
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v is now a function of 4 independent variables, so we can use the same
argument as above to calculate the functional derivative. We perturb y by
the amount €8 (x —x0) 6 (y —y0) 0 (z —z0) & (t — o) and follow through the
derivation in the same way. All the terms in the integral are of the form we
looked at in example 4 in this post, so we get
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We get the 3-d wave equation.
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