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As another application of the principle of least action we will look at a

vibrating string. Suppose we have a string stretched between two points so
that its tension is T . If we pluck the string so that it starts vibrating, then at
a point x on the line connecting the points to which the ends of the string are
joined, the displacement from equilibrium of a point on the string is given
by ψ (x, t). Assuming that a point on the string can move only up and down
(that is, perpendicular to the line joining the ends), then the kinetic energy
of a segment of length dx is (given that the string’s linear density is ρ):

dT =
1
2

ρdxψ̇
2 (1)

To get the potential energy, we can use the following argument. If a
segment of length dx is displaced from equilibrium by a distance dψ by the
action of the tension T , then the stretched length of that segment is

ds =
√

dx2 +dψ2 ≈ dx

(
1+

1
2

(
dψ

dx

)2
)

(2)

to first order in dx. The work done to stretch the string is the force T times
the distance stretched, which is ds−dx so the work done, which is equal to
the potential energy, is

dV = T (ds−dx) =
T
2

(
dψ

dx

)2

dx (3)

We can now introduce the Lagrangian density (effectively, the Lagrangian
per unit length):

L ≡ dL
dx

=
dT −dV

dx
=

ρ

2
(∂tψ)2− T

2
(∂xψ)2 (4)

The action can now be written as

S =

ˆ
Ldxdt (5)
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To minimize the action we now have to consider a functional that depends
on a function of two independent variables. That is, we have

L= L(ψ,∂xψ,∂tψ) (6)

where

ψ = ψ (x, t) (7)
We can generalize the original definition of a functional derivative by

considering a variation of the function ψ at one point (x0, t0), that is

ψ (x, t)→ ψ (x, t)+ εδ (x− x0)δ (t− t0) (8)
To see how this works, consider the slightly simpler case where the func-

tion L depends only on ψ and not on its derivatives. Then

δS [ψ (x, t)]
δψ (x0, t0)

= lim
ε→0

1
ε

ˆ
dt
ˆ

dx [L(ψ + εδ (x− x0)δ (t− t0))−L(ψ)]

(9)

=

ˆ
dt
ˆ

dx
∂L

∂ψ (x, t)
δ (x− x0)δ (t− t0) (10)

=

ˆ
dt

∂L
∂ψ (x0, t)

δ (t− t0) (11)

=
∂L

∂ψ (x0, t0)
(12)

where we used a Taylor expansion of the first line up to first order to get the
second line.

To extend this to the more general case where L = L(ψ,∂xψ,∂tψ) we
can follow example 2 in this earlier post to get

δS [ψ (x, t)]
δψ (x0, t0)

=
∂L

∂ψ (x0, t0)
− d

dx
∂L

∂ (∂xψ (x0, t0))
− d

dt
∂L

∂ (∂tψ (x0, t0))
= 0

(13)
Applying this to 4 we get

∂L
∂ψ (x0, t0)

− d
dx

∂L
∂ (∂xψ (x0, t0))

− d
dt

∂L
∂ (∂tψ (x0, t0))

= 0+T d
dx

(∂xψ)−ρ
d
dt

(∂tψ) = 0

(14)

∂
2
x ψ =

ρ

T
∂

2
t ψ (15)
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The final equation is just the wave equation that we derived earlier when
studying electromagnetic waves.

We can generalize this to a three-dimensionsal elastic medium by taking
ψ (x,y,z, t) = ψ (r, t) to be a three-dimensional scalar field (actually, it’s
not clear exactly what ψ represents in this case; in the ’real’ theory of 3-d
elasticity, the displacement of an element of the elastic medium is a vector
field, not a scalar field, as you would expect). We can generalize the idea of
a Lagrangian density to three dimensions, so we have

L=
ρ

2
(∂tψ)2− T

2
(∇ψ)2 (16)

The principle of least action is now

δS [ψ (r, t)]
δψ (r0, t0)

=
δ

δψ (r0, t0)

ˆ
dt
ˆ

d3r
[

ρ

2
(∂tψ)2− T

2
(∇ψ)2

]
(17)

=
δ

δψ (r0, t0)

ˆ
dt
ˆ

d3r
[

ρ

2
(∂tψ)2− T

2

[
(∂xψ)2 +(∂yψ)2 +(∂zψ)2

]]
(18)

ψ is now a function of 4 independent variables, so we can use the same
argument as above to calculate the functional derivative. We perturb ψ by
the amount εδ (x− x0)δ (y− y0)δ (z− z0)δ (t− t0) and follow through the
derivation in the same way. All the terms in the integral are of the form we
looked at in example 4 in this post, so we get

δS [ψ (r, t)]
δψ (r0, t0)

=−ρ∂
2
t ψ +T

(
∂

2
x ψ +∂

2
y ψ +∂

2
z ψ
)
= 0 (19)

∇
2
ψ =

ρ

T
∂

2
t ψ (20)

We get the 3-d wave equation.
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