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We can write the hamiltonian for the harmonic oscillator in terms of the

creation and annihilation operators as

Ĥ = h̄ω

(
a†a+

1
2

)
(1)

Normalization requires

a |n〉 =
√

n |n−1〉 (2)

a† |n〉 =
√

n+1 |n+1〉 (3)

so the combined operator a†a acts as a number operator, giving the number
of quanta in a state:

a†a |n〉 = a†√n |n−1〉 (4)

=
√

na† |n−1〉 (5)
= n |n〉 (6)

We can generalize this to a collection of independent oscillators where
oscillator k has frequency ωk. In that case

Ĥ = h̄∑
k

ωk

(
a†

kak +
1
2

)
(7)

where a†
k and ak are the creation and annihilation operators for one quantum

in oscillator k. For the harmonic oscillator, the energy levels are all equally
spaced, with a spacing of h̄ωk so if we redefine the zero point of energy to
be 1

2 h̄ωk for oscillator k, then the hamiltonian above can be rewritten as

Ĥ = ∑
k

nkh̄ωk (8)

where nk is the number of quanta in oscillator k. An eigenstate of this
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hamiltonian is a state containing N oscillators with oscillator k containing
nk quanta, which we can write as |n1n2 . . .nN〉. This is called the occupation
number representation since rather than writing out a complex wave func-
tion describing all N oscillators, we just list the number of quanta contained
within each oscillator.

The application of this to quantum field theory is that we can interpret
each quantum in oscillator k as a particle with a momentum pk. We’re not
saying that a particle is an oscillator; rather we’re noting that we can use
the same notation to refer to both particles and oscillators. So if we have a
number of momentum states pk available in our system, then we can define
creation and annihilation operators a†

pk
and apk for that momentum state and

write the hamiltonian as

Ĥ = ∑
k

Epka†
pk

apk (9)

In order for creation operators to work properly when creating elementary
particles, we need to recall that there are two fundamental types of particles:
fermions and bosons. The wave function for two bosons is, in position
space:

ψ (ra,rb) = A [ψ1 (ra)ψ2 (rb)+ψ2 (ra)ψ1 (rb)] (10)

If we interchange the two particles by swapping ra and rb, the compound
wave function ψ (ra,rb) doesn’t change, so that ψ (ra,rb) = ψ (rb,ra)

If we have two fermions, on the other hand, the wave function is

ψ (ra,rb) = A [ψ1 (ra)ψ2 (rb)−ψ2 (ra)ψ1 (rb)] (11)

and now if we swap the particles we get ψ (ra,rb) =−ψ (rb,ra).
If we use two creation operators operating on the vacuum state |0〉 to cre-

ate a state containing two particles, the resulting state must behave properly
under the exchange of the two particles. Another way of putting this is that
if we swap the order in which the particles are created we must get exactly
the same state if the particles are bosons, but the negative of the original
state if the particles are fermions. That is, for bosons

a†
p1

a†
p2
= a†

p2
a†

p1
(12)

or in terms of commutators [
a†

p1
,a†

p2

]
= 0 (13)
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For fermions, we’ll use the symbols c† and c for creation and annihilation
operators, and in this case we must have

c†
p1

c†
p2
=−c†

p2
c†

p1
(14)

For fermions we define an anticommutator as{
c†

p1
,c†

p2

}
≡ c†

p1
c†

p2
+ c†

p2
c†

p1
(15)

so we have {
c†

p1
,c†

p2

}
= 0 (16)

For the harmonic oscillator, the creation and annihilation operators satis-
fied the commutation relation[

ap1,a
†
p2

]
= δp1 p2 (17)

That is, the annihilation operator commutes with the creation operator if
they refer to different oscillators; otherwise the commutator is 1. To com-
plete the analogy between particles and oscillators, we just define the com-
mutation relations between creation and annihilation operators for particles
as

[
ap1,a

†
p2

]
= δp1 p2 (18){

cp1,c
†
p2

}
= δp1 p2 (19)

Example. The commutation relations can be inserted into a formula which
gives a new form of the Dirac delta function. For two different momentum
states p and q we have, for a pair of bosons[

ap,a†
q

]
= δpq (20)

Suppose that the system is enclosed in a cube of side length L. Then we
can construct the sum

1
V∑

p,q
ei(p·x−q·y)

[
ap,a†

q

]
=

1
V∑

p
eip·(x−y) (21)

What can we make of the sum on the RHS? To see what it is, suppose
we have some function f (x) defined for −π ≤ x ≤ π . We can expand it in
a Fourier series as follows:
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f (x) =
∞

∑
n=−∞

cneinx (22)

where the coefficients are

cn =
1

2π

ˆ
π

−π

f (x)e−inxdx (23)

We can write the Fourier series for the function at a particular point x = a
as

f (a) =
1

2π
∑
n

eina
ˆ

π

−π

f (x)e−inxdx (24)

=

ˆ
π

−π

f (x)
[

1
2π

∑
n

ein(a−x)
]

dx (25)

The term in brackets in the last line behaves exactly like δ (x−a) so we
can take it as another definition of the Dirac delta function

δ (x−a) =
1

2π
∑
n

ein(a−x) =
1

2π
∑
n

ein(x−a) (26)

where we can change the exponent in the last term because the sum over n
extends from −∞ to ∞ so we can replace n by −n and get the same sum.

Now if the function f (x) extends from 0 to L instead of from−π to π we
can replace x by ξ ≡ Lx/2π (and a by ξa ≡ La/2π) to get

f (ξa) =

ˆ L

0
f (ξ )

[
1

2π

2π

L ∑
n

ei2πn(ξa−ξ )/L
]

dξ (27)

=

ˆ L

0
f (ξ )

[
1
L ∑

p
eip(ξ−ξa)

]
dξ (28)

where

p≡ 2πn
L

(29)

Obviously, the same argument works for the y and z directions, so in 3-d
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f (a) =

ˆ
V

f (r)

[
1
L3 ∑

p
eip·(r−a)

]
d3r (30)

=

ˆ
V

f (r)

[
1
V∑

p
eip·(r−a)

]
d3r (31)

so the 3-d delta function is

δ
(3) (x−y) =

1
V∑

p
eip·(x−y) (32)

From 21 we get

1
V∑

p,q
ei(p·x−q·y)

[
ap,a†

q

]
= δ

(3) (x−y) (33)
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