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In their Chapter 13, L&B consider a field @ which has 3 components that
could represent 3 different states of a particle. They give the Lagrangian as
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This Lagrangian is invariant under 3-d rotations which they show leads to a
conserved charge vector Q .
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where the integrand is the standard cross product of two 3-d vectors.
The field vector @ is assumed to have the mode expansion for each com-
ponent given by
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where the index o = 1,2,3 specifies which of the 3 states of the particle
we’re looking at.
With this mode decomposition, the conserved charge then has compo-
nents

Q%= —i / p gabca;bapc 4)
For example
Q.= —z'/d3p (a:,lCLPZ — a;ﬂzaN) %)

The first part of the problem is to write the conserved charge in the com-
pact form
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where A = (am ,Ap2, ap3) is the vector of annihilation operators and J is a
3-component vector where each component is a 3 X 3 matrix consisting of
the spin-1 angular momentum matrices given in L&B’s Chapter 9. Actually,
the matrices they give there are 4 x 4, so I’'m assuming they want us to use
the 3 x 3 sub-matrix containing the spatial components. These matrices are
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We can now work out the matrix term A" JA. (I'll drop the p subscript
to avoid clutter.) First, we have
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Next, we have
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By comparing this with 4] we see that the 3 components of @ . match up
properly.

Next, we want to change to a different set of creation and annihilation
operators, namely those given in Exercise 3.3

The index on each J;
has been lowered
from that given in
Chapter 9, so the sign
is reversed.
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Using B = (b;,bo,b_1) we are to find the new set of matrices J so that

Qn.= / &’p B} JBy (20)

There may be some quick way of doing this, but it seems that we need to
express the a; operators in terms of b; and proceed from there. We have
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With these terms, we have
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Pulling out the creation operators we have
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We now need to express the 3 x 3 matrix on the RHS as a product of 3
separate matrices multiplied into B = (by,bp,b_1). We therefore have
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