
CONTOUR INTEGRATION AROUND A BRANCH CUT

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
We can make use of contour integration with branch cuts to evaluate some

real integrals. To do this we use the complex logarithm logz which is mul-
tivalued in that

logz = log
(
reiθ

)
= logr+ iθ (1)

However, if we rotate θ by 2π around z = 0, the value of z returns to its
original value, but the logarithm does not:

log
(
rei(θ+2π)

)
= logr+ iθ+2πi (2)

logz has branch points at z = 0 and z = ∞, so to restrict logz to a single
valued function, we can use a branch cut on the positive real axis.

If we want to do a contour integral of any function containing logz, the
contour must avoid crossing the branch cut. A commonly used contour is
the keyhole contour shown:

To see how this contour can be used, suppose we want to find a real
integral of some function f (x) along the positive real axis, that is we want
to find
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I =

ˆ
∞

0
f (x)dx (3)

If f (x) is well-behaved on the real axis, we can generalize it to a com-
plex function f (z), and then consider the integral of the function g (z) =
f (z) logz around the contour above. If we can show that the integral of
g (z) over the outer and inner circular portions of the contour goes to zero
as the radii of these circles tends to infinity (for the outer circle) and zero
(for the inner circle), then we’re left with the integrals over the two straight
line portions on either side of the positive real axis. Just above the axis,
θ→ 0 so z = xei0. Just below the axis, however, θ→ 2π and z = xe2πi.
Therefore, the integrals on these two lines are

Iupper =

ˆ
∞

0
f (x) logx dx (4)

Ilower = −
ˆ

∞

0
f (x)(logx+2πi) dx (5)

[The minus sign in Ilower is because the direction of integration is from
right to left.] Adding these together and applying the residue theorem, we
get

ˆ
contour

f (z) logz dz = Iupper+ Ilower (6)

= −2πi
ˆ

∞

0
f (x)dx (7)

= 2πi∑
i

Res(f (z) logz,ak) (8)

where ak is the kth pole of f (z). It’s important to remember that this
result works only if f (z) is well behaved on the real axis, and the inte-
grals over the two circular sections of the contour tend to zero in the limit.
However, these conditions are satisfied for a large collection of functions.

Example. Find I =
´

∞

0
dx

1+x4 . Generalizing to a complex function, we have

f (z) =
1

1+ z4 (9)

which has four poles at
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ak = (−1)1/4 (10)

=
(
eiπ+2kπ

)1/4
(11)

= eiπ/4, e3πi/4, e5πi/4, e7πi/4 (12)

To find the integral of g (z) = logz/
(
1+ z4) around the contour, we need

the residues of g (z) at the four poles. The residues are

Res(g (z) ,ak) = lim
z→ak

(z−ak)g (z) (13)

= lim
z→ak

(z−ak)f (z) logz (14)

Since logz is well behaved at all four poles, we can consider

lim
z→ak

(z−ak)f (z) = lim
z→ak

(z−ak)
1+ z4 (15)

These limits can be found using l’Hôpital’s rule, which says that if limz→ak f (z)=
limz→ak h(z) = 0, then

lim
z→ak

f (z)

h(z)
= lim
z→ak

f ′ (z)

h′ (z)
(16)

Applying this gives us

lim
z→ak

(z−ak)
1+ z4 =

1
4a3

k

(17)

=
ak

4a4
k

(18)

= −ak
4

(19)

since a4
k =−1 at all four poles. Therefore, the residues are

Res(f (z) logz,ak) = −1
4
ak logak (20)

= −1
4
eiπ/4eikπ/2

[
πi

4
(1+2k)

]
(21)

= −πi
16
eiπ/4eikπ/2 (1+2k) (22)

The four residues are
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k Res(ak)
0 −πi

16
(1+i)√

2

1 −3πi
16

(−1+i)√
2

2 −5πi
16

(−1−i)√
2

3 −7πi
16

(1−i)√
2

Adding them up we get

Icontour = 2πi∑
k

Res(ak) (23)

=−2πi
πi

16
√

2
[(1−3−5+7)+ i(1+3−5−7)] (24)

=
π2i√

2
(25)

To get the desired integral, we still need to show that integral of g (z) over
the circular portions of the contour go to zero. Over the outer circle, we can
set z =Reiθ and let R→ ∞. We have∣∣∣g(Reiθ)∣∣∣= ∣∣logReiθ

∣∣∣∣1+R4e4iθ
∣∣ (26)

Integrating over the outer circle gives

ˆ
R

∣∣logReiθ
∣∣∣∣1+R4e4iθ
∣∣dz =

ˆ 2π

0
R

∣∣logReiθ
∣∣∣∣1+R4e4iθ
∣∣dθ (27)

<

ˆ 2π

0
R

logR+ θ

|R4−1|
dθ (28)

< 2πR
logR+2π
|R4−1|

→ 0 (29)

In the second line, we want to maximize the integrand (and show it still
goes to zero as R→ ∞), so we need to minimize the denominator, which
occurs when e4iθ =−1. Thus the integral over the outer circle does indeed
go to zero.

For the inner circle, we can take the radius to be ε and get the same
expression:

ˆ
ε

∣∣logεeiθ
∣∣∣∣1+ ε4e4iθ
∣∣dz < 2πε

logε+2π
|ε4−1|

→ 0 (30)

since limε→0 ε logε= 0.
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Combining everything and using 8 and 25 we get
ˆ

∞

0

dx

1+x4 =
1

2πi
Icontour =

π

2
√

2
(31)

which is (fortunately) real.


