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I’ll collect here a few useful techniques for using contour integration in

the complex plane. I’m assuming that these techniques are still taught rela-
tively late in the physics curriculum so it’s not something that may be widely
known by armchair physicists. (I didn’t take a course on complex variable
theory until my third year as an undergraduate).

Suppose we have a function f (z) defined over some region of the com-
plex plane. If f (z) is holomorphic, that is, it is differentiable (in the complex-
variable sense of differentiable) over the entire region, then Cauchy’s the-
orem says that if you integrate this function around any closed contour C
within that region, the result is zero. That is:

˛
C
f (z)dz = 0 (1)

Now suppose that there is one point a within the region where f is not
differentiable because it blows up at that point. For example, suppose we
have the function

f (z) =
1

z− i
(2)

Then f is holomorphic over the entire complex plane except at the point
z = i. f (z) is said to have a pole at z = i. The pole is a simple pole,
because the denominator is first order in z− i. A higher order pole occurs
if the denominator is higher order, so that the function

f (z) =
1

(z− i)n
(3)

has an nth order pole at z = i.
The residue of a function at a pole is given by

Res(f,a) =
1

(n−1)!
lim
z→a

dn−1

dzn−1 [(z−a)
n f (z)] (4)

For a simple pole (n= 1), this formula reduces to

Res(f,a) = lim
z→a

[(z−a)f (z)] (5)

For example, the residue of 2 at z = i is
1
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Res(f, i) = lim
z→i

z− i
z− i

= 1 (6)

Cauchy’s residue theorem then gives an elegant result (I can remember
thinking this result was almost magical when I first learned it). If you
choose any closed contour C and integrate f (z) around C in a counter-
clockwise direction, the result is 2πi times the sum of the residues at the
poles within the contour. That is

˛
C
f (z)dz = 2πi∑

k

Res(f,ak) (7)

where ak is a pole within C.
For example, if we integrate 2 around any contour C that contains z = i

we get
˛
C

dz

z− i
= 2πiRes(f, i) = 2πi (8)

The most common application of Cauchy’s theorems in physics is in the
evaluation of definite integrals, typically involving infinite limits.

Example 1. Consider the integral
ˆ

∞

−∞

dx

1+x2 (9)

The integral can be done using elementary calculus with the result
ˆ

∞

−∞

dx

1+x2 = arctanx|∞−∞
=
π

2
−
(
−π

2

)
= π (10)

We can also do this using contour integration by defining a complex func-
tion

f (z) =
1

1+ z2 =
1

(z+ i)(z− i)
(11)

This function has simple poles at z =±i, with residues:

Res(f, i) =
1
2i

(12)

Res(f,−i) = − 1
2i

(13)

We can choose a contour as follows. ForR> 0, draw a line along the real
axis from −R to +R, then from +R, draw a semicircle of radius R in the
upper half plane so that it meets the real axis at −R. This contour encloses
only the pole at z = i, so the integral around this contour is
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˛
C

dz

1+ z2 = 2πi
(

1
2i

)
= π (14)

On the semicircular arc portion of the contour, z = Reit where t is a
real parameter that varies from 0 to π as we proceed along the arc in a
counterclockwise direction. Therefore

dz = iReitdt (15)ˆ
arc

dz

1+ z2 = iR

ˆ
arc

eitdt

1+R2e2it (16)

If we now let R → ∞, the integral on the RHS goes to zero, and the
integral along the real axis tends to the integral in 9 so we get our result

lim
R→∞

˛
C

dz

1+ z2 =

ˆ
∞

−∞

dx

1+x2 = π (17)

This example is a bit like using a sledgehammer to crack a peanut, but
it’s nice to verify that the residue theorem works in a simple case.

Example 2. A much more common case is when we wish to find a real
definite integral that has singularities on the real axis. For example

ˆ
∞

0

sinx
x

dx (18)

This function has a singularity at x = 0 (actually the function is well-
behaved there since limx→0

sinx
x = 1, but the indefinite integral itself has

no closed form solution). We can begin by converting this to a complex
function

f (z) =
eiz

z
=

cosz+ isinz
z

(19)

We can use the same contour as in Example 1, except now we bypass the
point z = 0 with a small semicircular arc of radius ε. Thus the total contour
consists of 4 sections:

C =


t ∈ [ε,R] z = t

t ∈ [0,π] z =Reit

t ∈ [−R,−ε] z = t

t ∈ [π,0] z = εeit

(20)

[Forgive me for not providing a drawing, but they’re hard to do!]
This contour bypasses the difficult point so that f (z) has no poles within

the contour, thus by Cauchy’s theorem
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˛
C

eiz

z
dz = 0 (21)

To work out the integral, we split it into the four parts of the contour:

˛
C

eiz

z
dz =

ˆ R

ε

eit

t
dt+

ˆ π

0

eiRe
it

Reit
dz+

ˆ −ε
−R

eit

t
dt+

ˆ 0

π

eiεe
it

εeit
dz (22)

=

ˆ R

ε

eit

t
dt+

ˆ π

0

eiRe
it

Reit
iReitdt+

ˆ −ε
−R

eit

t
dt+

ˆ 0

π

eiεe
it

εeit
iεeitdt

(23)

The third integral can be transformed by substituting t=−x:

ˆ −ε
−R

eit

t
dt=

ˆ ε

R

e−ix

x
dx=−

ˆ R

ε

e−ix

x
dx (24)

Changing the integration variable from t to x in the first integral in 23
and adding to this result gives

ˆ R

ε

eit

t
dt+

ˆ −ε
−R

eit

t
dt =

ˆ R

ε

eix− e−ix

x
dx (25)

= 2i
ˆ R

ε

sinx
x

dx (26)

Taking the limits ε→ 0 and R→ ∞ thus give us the required integral
18. To deal with the other two integrals in 23, we’ll look first at the second
integral. The numerator in the integrand is

eiRe
it
= eiRcoste−R sint (27)

Remembering that t is real and in the range t∈ [0,π], sin t≥ 0 so−R sin t<
0. As R→ ∞, the integrand thus tends to zero exponentially, so the integral
tends to zero.

For the other integral, we want the limit as ε→ 0, so we have

lim
ε→0

ˆ 0

π

eiεe
it

εeit
iεeitdt= i lim

ε→0

ˆ 0

π
eiεe

it
dt=−πi (28)

Combining this with 26 we have
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lim
ε→ 0
R→ ∞

˛
C

eiz

z
dz = 2i

ˆ
∞

0

sinx
x

dx−πi= 0 (29)

ˆ
∞

0

sinx
x

dx =
π

2
(30)

Most infinite integrals with singularities on the real axis need to be han-
dled this way. Bypass the singularities with little semicircular arcs and work
out the integral on each segment of the contour. Typically the integral over
the large semicircular arc tends to zero as R→ ∞.
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