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Hermite’s differential equation shows up during the solution of the Schrödinger

equation for the harmonic oscillator. The differential equation can be writ-
ten in the form

d2f

dy2 −2y
df

dy
+(ε−1)f = 0 (1)

but an analysis of the series solution of this equation shows that the param-
eter ε has to have the form

ε= 2n+1 (2)

for some integer n, so we can rewrite the differential equation as

d2f

dy2 −2y
df

dy
+2nf = 0 (3)

We know the solutions of this equation are polynomials in y, and we
got (from the series solution) a recursion formula for the coefficients of the
polynomials, but a recursion formula can be difficult to work with, and it
turns out that there is another form that can be used to work with these
polynomials. This uses the idea of the generating function.

The idea is that we can write a function S(y,s), where y is the same y as
in the differential equation, and s is a kind of dummy variable that allows
us to do calculations (as we’ll see in a moment). Suppose we define this
function as follows:

S(y,s)≡ e−s
2+2sy (4)

From the expansion of the exponential in a Taylor series, we can also
write this as
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S(y,s) =
∞

∑
m=0

(−s2 +2sy)m

m!
(5)

=
∞

∑
m=0

sm(2y−s)m

m!
(6)

At first (and probably second) glance, this formula seems to have little
relation to Hermite polynomials, but let’s write out the first few terms of the
series

S(y,s) = 1+
s(2y−s)

1!
+
s2(2y−s)2

2!
+
s3(2y−s)3

3!
+ . . . (7)

= 1+2ys+(−1+2y2)s2 +(−2y+
4
3
y3)s3 + . . . (8)

In the second line, we regrouped the series so that terms with the same
power of s are grouped together. The mth term in the series contains terms
involving s to the mth and higher powers only, so if we want to isolate
those terms for a particular power (say the nth power) of s we need look
at only the first n terms of the series. What do we get if we look at terms
involving each successive power of s, starting with the zeroth power? As
can be seen above, the term involving sm is multiplied by a polynomial in
y and by comparing these polynomials with those obtained by our earlier
definition of the Hermite polynomials, we can see that each polynomial here
is Hm(y)/m!. That is

S(y,s) =
∞

∑
m=0

Hm(y)

m!
sm (9)

Obviously we haven’t proved this in general, but this function may also
be taken as the definition of Hermite polynomials, as the other definition
that we used earlier can be derived from it, as we’ll see at the end of this
post.

The Hermite polynomials can be obtained from this generating function
by taking derivatives, as follows. Since the jth derivative of sm is zero if
m < j, taking this derivative will eliminate all terms with m < j. The jth

derivative of sj is the constant j!. For all higher powers where m> j, the
jth derivative will leave a term sm−j . So if we take the jth derivative of
S(y,s) and then set s= 0 we will isolate the single term involving Hj(y):
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djS(y,s)

dsj

∣∣∣
s=0

= j!
Hj(y)

j!
(10)

=Hj(y) (11)

This is the reason that S(y,s) is called a generating function: it provides
a relatively simple way of generating all the Hermite polynomials.

Since we started by defining the generating function, we should prove
that the polynomials that it generates really are solutions of Hermite’s dif-
ferential equation. We can do this by taking derivatives of the generating
function (but without the step of setting s= 0). We take derivatives of 4 and
9 and then set them equal to each other.

∂S

∂y
= 2se−s

2+2sy (12)

=
∞

∑
m=0

2sm+1

m!
Hm(y) from (1) (13)

∂S

∂y
=

∞

∑
m=0

1
m!

dHm

dy
sm from (2) (14)

Now we use the old trick of requiring these two results to be equal for all
values of s, which implies that the coefficients of each power of s must be
equal independently. That is

∞

∑
m=0

2sm+1

m!
Hm(y) =

∞

∑
m=0

1
m!

dHm

dy
sm (15)

∞

∑
m=1

2sm

(m−1)!
Hm−1(y) =

∞

∑
m=1

1
m!

dHm

dy
sm (16)

In the second line, we adjusted the summation index on the left so that
the power of s was sm. On the right, we dropped the m = 0 term since
dH0/dy = 0 anyway (since H0 = 1). The two sums are now aligned, so we
can say

2
(m−1)!

Hm−1(y) =
1
m!

dHm

dy
(17)

2mHm−1 =H ′m (18)

By a similar process we can take the other derivative with respect to s:
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∂S

∂s
= (−2s+2y)e−s

2+2sy (19)

=
∞

∑
m=0

(−2s+2y)sm

m!
Hm from (1) (20)

∂S

∂s
=

∞

∑
m=1

m

m!
Hms

m−1 from (2) (21)

We have ignored the m = 0 term in the last line, since the derivative of
the first term in the series with respect to s is zero. Aligning the powers of
s gives

−
∞

∑
m=1

2sm

(m−1)!
Hm−1 +

∞

∑
m=0

2ysm

m!
Hm =

∞

∑
m=0

1
m!

Hm+1s
m (22)

−2mHm−1 +2yHm =Hm+1 (23)

This relation is valid for all m even though the m = 0 case is a bit for-
tuitous. With m = 0 we get 2yH0 = H1 which is true, since H0 = 1 and
H1 = 2y.

From these results we can show that the polynomials do in fact solve Her-
mite’s differential equation. We do this by showing that the results above
allow us to reconstruct the equation. From the second result:

Hm+1 = 2yHm−2mHn−1 (24)

H ′m+1 = 2Hm+2yH ′m−2mH ′n−1 (25)

From the first result, 2mH ′m−1 =H ′′m, and H ′m+1 = 2(m+1)Hm so sub-
stituting these into the last line above, we get

H ′′m−2yH ′m+2mHm = 0 (26)

which is Hermite’s equation. QED.
One final bit of business is to show that the generating function approach

is equivalent to the other definition of Hermite polynomials, that is, that it
is equivalent to saying

Hn ≡ (−1)nex
2 dn

dxn
e−x

2
(27)

The generating function 4 can be written as
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S(y,s) ≡ e−s
2+2sy (28)

= ey
2−(s−y)2

(29)

so taking the derivative, we get

∂nS

∂sn
= ey

2 ∂n

∂sn
e−(s−y)

2
(30)

= (−1)ney
2 ∂n

∂yn
e−(s−y)

2
(31)

since for any function f(s− y), ∂f/∂s = −∂f/∂y. Setting s = 0, we re-
claim the original definition:

∂nS

∂sn

∣∣∣
s=0

= (−1)ney
2 ∂n

∂yn
e−y

2
(32)

so the two definitions are equivalent.
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