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Hermite polynomials turn up in the solution of the Schrödinger equation

for the harmonic oscillator. Most quantum mechanics textbooks quote the
properties of these polynomials and refer the reader to some other book on
mathematics, so it is rare for a student to see where these properties come
from. From a mathematical point of view, some of these properties seem
almost magical, so it’s interesting look at how they arise.

A polynomial in the single variable x is, in general, any sum of powers
of x with constant coefficients. That is

P (x) = a0 +a1x+a2x
2 +a3x

3 + . . .+anx
n (1)

=
n

∑
j=0

ajx
j (2)

where the coefficients aj are constant (independent of x).
The highest power of x (n in this case) is called the degree of the poly-

nomial, and it is possible for the degree to be infinite.
There is nothing particularly remarkable about a general polynomial, but

certain sets of polynomials have been discovered that do have notable prop-
erties. The Hermite polynomials are one such set.

There are several ways that Hermite polynomials can be defined, but the
one used by physicists is this: the Hermite polynomial of degree n is defined
as

Hn ≡ (−1)nex
2 dn

dxn
e−x

2
(3)

At first glance, this doesn’t look like a polynomial at all, since it contains
only exponentials. But if we calculate the first few, we can see that we get
a sequence of polynomials:
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H0 = ex
2
e−x

2
(4)

= 1 (5)

H1 = −ex
2
e−x

2
(−2x) (6)

= 2x (7)

H2 = (−1)2ex
2
e−x

2
(4x2−2) (8)

= 4x2−2 (9)
H3 = 8x3−12x (10)
H4 = 16x4−48x2 +12 (11)

No matter how many derivatives of e−x
2

we take, the e−x
2

term always
comes out the other end and is cancelled by the ex

2
term at the front, leav-

ing the polynomial term as the only survivor. Note that polynomials of even
degree (0, 2, 4, ...) are even functions, that is, H(−x) =H(x) so they are
symmetric about the origin), and polynomials of odd degree are odd func-
tions (H(−x) = −H(x)). Note that the coefficient of the highest degree
term in Hn is 2n since every new derivative brings down a factor of (−2x)
from the exponential factor to multiply the previous polynomial.

The most remarkable property of the Hermite polynomials, and of vital
importance for their use in quantum mechanics, is the fact that they are
orthogonal functions when integrated over the interval (−∞,∞), provided
they are multiplied, or weighted, by e−x

2
. That is

ˆ
∞

−∞

e−x
2
Hn(x)Hm(x)dx= 0 if n 6=m (12)

To see this, we can use the definition 3 of the polynomials, and integration
by parts. If we assume (without loss of generality) that m< n:

ˆ
∞

−∞

e−x
2
Hn(x)Hm(x)dx=

ˆ
∞

−∞

(−1)n
dn

dxn
e−x

2
Hm(x)dx (13)

= (−1)n
dn−1

dxn−1 e
−x2

Hm(x)
∣∣∞
−∞
− (−1)n

ˆ
∞

−∞

dn−1

dxn−1 e
−x2 d

dx
Hm(x)dx

(14)

The integrated term is zero, since the derivative in this term will always
contain the factor e−x

2
and this goes to zero faster than any polynomial, so

the in the limit of ±∞, the term vanishes.
The remaining integral can be integrated by parts again, with the same

result for the integrated term, but with a remaining integral of
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ˆ
∞

−∞

dn−2

dxn−2 e
−x2 d2

dx2Hm(x)dx (15)

Since Hm(x) is a degree-m polynomial, and since we took m < n, we
will eventually reach the (m+1)th derivative of Hm(x) at the same time as
the other term becomes dn−m−1

dxn−m−1 e
−x2

= e−x
2
Hn−m−1(x) from equation 3.

Now the (m+1)th derivative of a degree m polynomial is always zero, so
the resulting integral is also zero.

When n=m, we stop the integration by parts when we reach themth de-
rivative under the integral sign, since in that case, we will have dmHm/dx

m=
2mm!. Remember from above that the coefficient of the degree-m term in
Hm is 2m. Taking the mth derivative of 2mxm will give you 2mm! since
each derivative reduces the power of x by 1 and brings that power down as
multiplicative factor out front. Thus we get

ˆ
∞

−∞

e−x
2
Hm(x)Hm(x)dx = 2mm!

ˆ
∞

−∞

e−x
2
dx (16)

= 2mm!
√
π (17)

(As to how we know that
´

∞

−∞
e−x

2
dx=

√
π, that’s a topic for another post!

Suffice it to say here that it’s another of those magical moments when two
seemingly unrelated fundamental constants in mathematics, e and π, turn
out to be intimately related.)

We can combine these two results into one formula by saying:

ˆ
∞

−∞

e−x
2
Hn(x)Hm(x)dx= 2mm!

√
πδnm (18)

where δnm is the Kronecker delta symbol, which is 1 if m= n and 0 other-
wise.

To make the connection with their usage in the quantum mechanics of the
harmonic oscillator, we need to derive a recurrence relation for the poly-
nomials, in which higher degree polynomials can be derived from lower
degree ones. We’ll introduce the notation

F (x)≡ e−x
2

(19)

From the definition 3, we have
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dnF

dxn
= F (n)(x) (20)

= (−1)nHn(x)e
−x2

(21)

Starting with the (n−1)th derivative, we have

F (n)(x) =
dF (n−1)(x)

dx
(22)

= (−1)n−1Hn−1(x)(−2x)e−x
2
+(−1)n−1dHn−1(x)

dx
e−x

2
(23)

= (−1)n
[

2xHn−1(x)−
dHn−1(x)

dx

]
e−x

2
(24)

= (−1)nHn(x)e
−x2

(25)

where the last line comes from the definition 3. We therefore get our recur-
sion relation:

Hn(x) = 2xHn−1(x)−
dHn−1(x)

dx
(26)
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