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We’ve had a look at some properties of hermitian operators in the last few
posts. Here we’ll look at the hermitian conjugate or adjoint of an operator.

The adjoint of an operator Q is defined as the operator Q' such that

(11Q9) = (@Q"f|9) M

For a hermitian operator, we must have

(flQg) =(Qf|9) 2
which means a hermitian operator is equal to its own adjoint.
We can find the adjoints of some operators we’ve already met.

(1) The position operator z: Since x is hermitian, its adjoint is also x.

(2) The imaginary number i: We must have (f|ig) = <QTf]g> so Q=
—1.

(3) For the operator d/dz, we can use integration by parts to find:
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(where we throw away the integrated terms under the usual assumption that

they are zero at the limits of integration) so Q' = —%.

If we have the product of two operators, we find that

(FIQR) = (Q'1IRS) ©)
= (R'@Q"NIf) ™
Thus
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Another interesting case is the harmonic oscillator raising operator, which
is
1
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Since p and x are hermitian, and every other term apart from ¢ is a real

constant, we can use the results above to see that:
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Thus the raising and lowering operators are hermitian conjugates of each
other.

(ip+mwz) =a— (10)
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