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Suppose we have an analytic function f (z) that acts on a domain D.

The function maps each point in D onto another point in a domain D′. If
the mapping is one-to-one, that is, for each point in D there is a unique
point w inD′, then the function f (z) has an inverse f−1 (w) that maps each
point in D′ back to a unique point in D. Such a mapping (and its inverse)
is called a conformal mapping. We can think of a conformal mapping in
geometric terms, by plotting D as a region in the complex plane, and then
D′ as another, possible different, region in the complex plane.

We can write a point in D as

z = x+ iy (1)
and a point in D′ as

w = u+ iv (2)
If we start with a function φ(x,y) that satisfies Laplace’s equation

∂2φ

∂x2 +
∂2φ

∂y2 = 0 (3)

in a domain D, then when we do a conformal mapping to D′, the cor-
responding function ψ (u,v) in D′ also satisfies Laplace’s equation (proof
given in Saff and Snider, Section 7.1). That is,

∂2ψ

∂u2 +
∂2ψ

∂v2 = 0 (4)

Example 1. Consider the mapping given by

f (z) = ez (5)
defined over the domain D given by the half-infinite strip bounded by the
imaginary axis (x= 0) on the left, the horizontal line y = π

2 above, and the
horizontal line y =−π2 below. The strip extends off to infinity on the right.
To find D′ (where points are labelled by (u,v)), we see how the boundaries
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transform under the mapping 5. On the imaginary axis, f (z) = eiy which
has modulus 1, so it maps the imaginary axis onto the unit circle. For y= π

2 ,
f (z) = exeiπ/2 = iex. Since x > 0 in D, this maps to the imaginary axis
with v > 1. For y = −π2 , we have f (z) = exe−iπ/2 = −iex, so this line
is mapped into the negative imaginary axis with v < −1. A general point
f (z) = ex+iy = ex (cosy+ isiny) with −π2 < y < π

2 and x > 0 thus maps
to the right half-plane, with the semicircular disk |w|< 1 excluded.

Now consider the harmonic function

φ(x,y) = x+y (6)
Since

∂2φ

∂x2 =
∂2φ

∂y2 = 0 (7)

this function satisfies Laplace’s equation 3. To find its transform under
f (z) = ez, we have

ψ (u,v) = φ(x(u,v) ,y (u,v)) (8)
We have

w = f (z) = ex cosy+ iex siny (9)
so

u= ex cosy
v = ex siny

(10)

We can invert this to give

u2 +v2 = e2x (11)

x(u,v) =
1
2

Log
(
u2 +v2) (12)

v

u
= tany (13)

y (u,v) = arctan
v

u
(14)

Therefore

ψ (u,v) = x(u,v)+y (u,v) (15)

=
1
2

Log
(
u2 +v2)+ arctan

v

u
(16)
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We can verify that ψ (u,v) satisfies Laplace’s equation 4 by direct differ-
entiation. The derivatives get a bit messy, so I used Maple to simplify the
results. We get

∂2ψ

∂u2 =
−u2 +2uv+v2

(u2 +v2)
2 (17)

∂2ψ

∂v2 =
u2−2uv−v2

(u2 +v2)
2 (18)

From this, we see that 4 is indeed satisfied.
If we start with

ψ (w) = u+v (19)
then we can get the inverse relation φ(x,y) from

φ(x,y) = ψ (u(x,y) ,v (x,y)) (20)
Using 10 we have

φ(x,y) = ex cosy+ ex siny (21)
Calculating the derivatives, we have

∂2φ

∂x2 = ex cosy+ ex siny (22)

∂2φ

∂y2 =−ex cosy− ex siny (23)

We see again, that Laplace’s equation is satisfied, that is

∂2φ

∂x2 +
∂2φ

∂y2 = 0 (24)
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