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We’ve seen how Legendre polynomials arise from a simplified version of

Legendre’s differential equation. Here we have a look at how the polyno-
mials can be generated from a simple geometric situation.

We start with an ordinary triangle with sides of lengths a, b and c, and
define the angle θ between sides a and b. Then the cosine rule (a general-
ization of Pythagoras’s theorem) says:

c=
√
a2 + b2 −2abcosθ (1)

If the triangle is right-angled, then θ = π/2 and we get back Pythagoras’s
theorem.

Now if we consider the reciprocal of c (encountered in physics in any
situation where some phenomenon depends on the inverse of the distance,
as in the electrostatic or gravitational potential functions), we get

1
c

= (a2 + b2 −2abcosθ)−1/2 (2)

=
1
b
(1+(a/b)2 −2(a/b)cosθ)−1/2 (3)

Now suppose we consider triangles where b > a. We can expand the term
in brackets in a Taylor series in the quantity (a/b). To make the notation
easier, we define x≡ cosθ and t≡ a/b. Then the Taylor series will have the
general form

(1+ t2 −2xt)−1/2 =
∞

∑
n=0

Pn(x)t
n (4)

This formula can be used as the starting point for a study of the Legendre
polynomials if we define the quantities Pn(x) to be the Legendre polyno-
mials. Obviously, if we do this, we need to demonstrate that they are the
same polynomials that turn up as the solutions to Legendre’s differential
equation, but we’ll leave that to another post. What we’ll do here is use this
definition to derive an explicit formula for calculating Pn(x).
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First, we’ll have a look at the Taylor series for the function f(u) = (1−
u)−1/2. Remember that the Taylor series about the reference point u = 0
has the form

f(u) =
∞

∑
n=0

un

n!
f (n)(0) (5)

where f (n)(0) is the nth derivative of f(u) evaluated at u= 0. Calculating
the first few derivatives of f(u) = (1−u)−1/2 we get

f(u) = (1−u)−1/2 (6)

f (1)(u) =
1
2
(1−u)−3/2 (7)

f (2)(u) =
3
2

1
2
(1−u)−5/2 (8)

f (3)(u) =
5
2

3
2

1
2
(1−u)−7/2 (9)

It’s fairly obvious that a pattern is forming, and the general formula for
the nth derivative is

f (n)(u) =
(2n−1)!!

2n
(1−u)−(2n+1)/2 (10)

where the notation (2n−1)!! is a double factorial which means the product
of every second number from 2n−1 down to 1. That is

(2n−1)!! = (2n−1)(2n−3)(2n−5) . . .(3)(1) (11)

Thus the derivatives evaluated at u= 0 are

f (n)(0) =
(2n−1)!!

2n
(12)

and the Taylor series is

f(u) = 1+
∞

∑
n=1

(2n−1)!!
2nn!

un (13)

We’ve separated out the first term (1) in order to avoid a negative factorial
from the (2n−1)!! term.

We can get rid of the double factorial by noting that
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(2n−1)!! =
(2n)!
(2n)!!

(14)

=
(2n)!
2nn!

(15)

The first line follows since the numerator is the product of all integers
up to 2n and the denominator cancels off all the even integers, leaving the
product of all the odd ones. The last line follows since

(2n)!! = (2n)(2n−2)(2n−4) . . .(2) (16)

= (2n)(2(n−1))(2(n−2)) . . . .(2(1)) (17)
= 2nn! (18)

Thus we can write the Taylor series as

f(u) =
∞

∑
n=0

(2n)!
22n(n!)2u

n (19)

Using this in 4, we get

(1− (2xt− t2))−1/2 =
∞

∑
n=0

(2n)!
22n(n!)2 (2xt− t

2)n (20)

Although it is possible to use this formula to pick out individual Legendre
polynomials, it isn’t very convenient, since we need to find all terms in a
particular power of t to get the corresponding polynomial. However, the
factor (2xt− t2)n is an ordinary binomial, so we can use the binomial the-
orem to expand it.

The binomial theorem states

(a+ b)n =
n

∑
k=0

(
n
k

)
akbn−k (21)

=
n

∑
k=0

(
n
k

)
an−kbk (22)

where
(
n
k

)
is the binomial coefficient(

n
k

)
=

n!
k!(n−k)!

(23)

The second line 22 in the theorem above points out that the expansion is
symmetric in a and b.
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With a= 2xt and b=−t2, we have

(2xt− t2)n =
n

∑
k=0

(
n
k

)
(2xt)n−k(−t2)k (24)

=
n

∑
k=0

(
n
k

)
(−1)k(2x)n−ktn+k (25)

=
n

∑
k=0

n!
k!(n−k)!

(−1)k(2x)n−ktn+k (26)

Substituting this back into 20 we get

(1− (2xt− t2))−1/2 =
∞

∑
n=0

(2n)!
22n(n!)2

n

∑
k=0

n!
k!(n−k)!

(−1)k(2x)n−ktn+k

(27)

=
∞

∑
n=0

n

∑
k=0

(2n)!
22nn!k!(n−k)!

(−1)k(2x)n−ktn+k (28)

We might still appear to be no further ahead, since we still need to pick out
several separate terms to find all those terms where t has a particular expo-
nent. However, there is a summation trick we can use to simplify things.

If we think of the term being summed as one entry in a matrix, we can
write it using the notation

ank ≡
(2n)!

22nn!k!(n−k)!
(−1)k(2x)n−ktn+k (29)

If the index n represents the row in the matrix and k the column, the
summation in 28 extends over the lower triangular section of the matrix
(that is, from the diagonal down to the lower left corner). The summation
as written sums each row in turn from the first column out to the diagonal.

What we would like to do is to group the terms in the sum so that all terms
with the same exponent for t are grouped together. That is, we are looking
for those terms in the sum where n+ k = r for some particular value of
r. Since we are considering the lower triangle of the matrix, these groups
consist of
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a00 r = 0 (30)
a10 r = 1 (31)

a20,a11 r = 2 (32)
a30,a21 r = 3 (33)

a40,a31,a22 r = 4 (34)
. . . r = . . . (35)

Thus for a given value of r, the matrix elements we want to select are
of the form ar−s,s where s = 0,1, . . . [r/2] where the notation [r/2] means
’greatest integer less than or equal to r/2’.

We can therefore rearrange the sum by making the summation index sub-
stitutions k = s, n = r− s, and alter the summation ranges so that r runs
from 0 to ∞ and s from 0 to [r/2]. We then get

(1− (2xt− t2))−1/2 =
∞

∑
r=0

[r/2]

∑
s=0

(2r−2s)!
22r−2s(r−s)!s!(r−2s)!

(−1)s(2x)r−2str

(36)
We can now relabel the summation indexes back to k and n (since they

are dummy indexes, we can call them whatever we like), and get

(1− (2xt− t2))−1/2 =
∞

∑
n=0

[n/2]

∑
k=0

(2n−2k)!
22n−2k(n−k)!k!(n−2k)!

(−1)k(2x)n−2ktn

(37)

=
∞

∑
n=0

Pn(x)t
n (38)

where the last line is by comparison with 4.
By the uniqueness of power series, the coefficients of each power of t

must be equal on either side of the equation, so we get our explicit formula
for the Legendre polynomials:

Pn(x) =
[n/2]

∑
k=0

(2n−2k)!
22n−2k(n−k)!k!(n−2k)!

(−1)k(2x)n−2k (39)

=
[n/2]

∑
k=0

(2n−2k)!
2n(n−k)!k!(n−2k)!

(−1)kxn−2k (40)
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