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The vector area of a surface is the integral of the differential area vector

over the surface. That is

a≡
ˆ
S
da (1)

Remember that da is normal to the surface at each point.
As an example, we can calculate a for a hemisphere of radius R. In

spherical coordinates |da| = R2 sinθdθdφ. Since the vector area definition
is a vector equation, it’s easiest to split it up into 3 equations in rectangular
coordinates. The normal to the hemisphere is in the r̂ direction at every
point, and

r̂ = sinθ cosφx̂+ sinθ sinφŷ+ cosθẑ (2)
For the x component, we have

ax = R2
ˆ π/2

0

ˆ 2π

0
cosφsin3 θdφdθ (3)

= 0 (4)

since the integral over φ gives zero. Similarly, ay = 0. For az we get

az = R2
ˆ π/2

0

ˆ 2π

0
cosθ sinθdφdθ (5)

= πR2 (6)

Thus the vector area of a hemisphere has the same magnitude as the circle
that is its base. As a vector, the area is

aaa= πR2ẑzz (7)
For a full sphere, we just extend the upper limit on θ to π in the above

integrals, and we find that all three components are zero. In fact, this is a
special case of a more general theorem, which is that a = 0 for any closed
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surface. To see this, we can apply the divergence theorem in the following
way.

Suppose we have a vector field v = cT , where c is a constant vector and
T is some scalar field. Then if S is a closed surface and V is the volume it
encloses:

ˆ
S

v ·da =

ˆ
V

∇ ·vd3r (8)

c ·
ˆ
S
Tda =

ˆ
V

∇ · (cT )d3r (9)

=

ˆ
V
[c ·∇T +T∇ · c]d3r (10)

= c ·
ˆ
V

∇Td3r (11)

where the last equality follows because c is a constant so ∇ · ccc= 0. Since c
is arbitrary, the two integrals must be equal:

ˆ
S
Tda =

ˆ
V

∇Td3r (12)

If we take T = 1 then the LHS is just a and the RHS is zero since T is a
constant. Thus the vector area of any closed surface is zero. This is because
although the actual surface area is non-zero, the vector components always
cancel each other out as we integrate over the surface.

Consider now a closed surface and divide it into two parts by cutting
it along some closed curve L. Since the total vector area is zero, we must
have aupper =−alower. Now the shape of the surface is arbitrary, so for some
curve L, we can keep the lower surface constant while varying the shape of
the upper surface. That is, alower is held constant while the upper surface
varies. However, the equality of the two areas must always hold, so any
surface enclosed by L must have the same vector area. This explains why
the vector area of a hemisphere is just the area of the circle that defines its
base: these are just two different surfaces sharing a boundary curve.

We can apply this to get a different formula for a in terms of the boundary
curve. Suppose we draw a cone with its vertex at the origin and with its base
being the curve L. (The base need not lie in a plane, since L doesn’t have to
be flat. This won’t affect the argument.) The vector area of this cone must
be the same as any other surface that shares L. Now if we divide up L into
line increments dl then we divide up the cone into a sequence of triangles
with sides r (the vector from the vertex of the cone (the origin) to dl), dl
and r+ dl. The area of this triangle is half the area of the parallelogram
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with two adjacent sides r and dl, and that in turn is the magnitude of r×dl.
Therefore

a =
1
2

˛
L

r×dl (13)

Finally, we can derive a similar result to 12 using Stokes’s theorem.
Again using a vector field v = cT we have

ˆ
L

v ·dl =
ˆ
S
[∇× (cT )] ·da (14)

c ·
ˆ
L
Tdl =

ˆ
S
[T∇× c− c×∇T ] ·da (15)

=−
ˆ
S
(c×∇T ) ·da (16)

=−c ·
ˆ
S
(∇T ×da) (17)

The last line uses the triple vector product identity A · (B×C) = B ·
(C×A). Equating integrals gives

ˆ
L
Tdl =−

ˆ
S
(∇T ×da) (18)

If we let T = c · r for a constant vector c, we get

ˆ
L
(c · r)dl =−

ˆ
S

∇(c · r)×da (19)

=−
ˆ
S
[c× (∇× r)+(c ·∇)r]×da (20)

=−
ˆ
S

c×da (21)

=−c×a = a× c (22)

The second line omits the derivatives of c which are all zero. To get the
third line, we use ∇× r = 0 and (c ·∇)r = c (both of which can be proved
by direct calculation).
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