
TENSOR TRACE
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Reference: Moore, Thomas A., A General Relativity Workbook, Univer-

sity Science Books (2013) - Chapter 6; Problem 6.3.
The trace of a rank-2 tensor is given by the contraction F i

i. In matrix
terminology, it is the sum of the diagonal elements. If we start with a con-
travariant tensor F ij , then we can calculate the trace as follows:
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That is, we first lower the second index, then contract the top and bottom
indices.

Since the trace contains no free index, it should be a scalar, which means
it should be invariant. We can prove this by doing the transformation.
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