GEODESIC EQUATION: 2-D SPACE-TIME
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Reference: Moore, Thomas A., A General Relativity Workbook, Univer-
sity Science Books (2013) - Chapter 8; Problem 8.5.

This is an example of the geodesic equation in a 2-d space-time (with one
time and one space dimension). The metric is given in a general way as
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where ¢ is the generalized spatial coordinate, and f is an arbitrary function.
The metric tensor is then
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Using the time component of the geodesic equation, we set a = ¢ in:
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From this we conclude that
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for some constant k.
Using the condition u-u = —1 we get
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We can write this in terms of dq/dt:
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That is, the geodesic is the solution of this differential equation.

If we define a new coordinate system in which ¢’ =t and ¢’ = F (q) is the
antiderivative (integral) of f (¢) then we can transform the metric tensor to
this new coordinate system using the standard transformation formula
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By implicit differentiation:
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The new metric is therefore
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This is the metric of flat space-time in rectangular coordinates. Thus
any metric with g;; = —1 represents flat space-time, since f(q) is just a

transformation of the flat metric using different coordinates.



