MAXWELL’S EQUATIONS IN CYLINDRICAL COORDINATES
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As an example of using the geodesic equation to [calculate Christoffel
symbols, we’ll consider Maxwell’s equations in cylindrical coordinates. We

compare the geodesic equation:
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with the expression for the Christoffel symbols:
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Using cylindrical coordinates to describe flat spacetime, we have
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The geodesic equation is, for each of the four coordinates
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From this we get the Christoffel symbols:
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The electromagnetic field tensor is, in rectangular coordinates:
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We can write this tensor in cylindrical coordinates as follows:
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Each entry in this tensor is found by the usual transformation rule. For
example, since t' = ¢, 2/ = z,r = /22 +y? and = tan' ¥
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Using the same transformation rule, we get for the other 3 components:
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Two of Maxwell’s equationscan be written in terms of the electromag-
netic tensor in rectangular coordinates as
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This corresponds to the two Maxwell equations (in units where ¢ =1/, /g€y =
1):
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In other coordinate systems, we can write [I9) by replacing the ordinary
derivative by the covariant derivative:
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To evaluate the covariant derivative, we write it in terms of the Christof-
fel symbols. Since there is a sum over the index a, we first write out the
derivative without the sum:

VoY = 0, F + T, FI¢ 4T, FY (23)

Now we can take the sum by setting a = c:
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Since Faj = Fja and F'% = —F%_ the double sum Faija is always

zero, so the second term on the RHS vanishes. We are left with

V" = 0,F" +T%;F" (25)

aj’
RHS isn’t terribly complicated when the sums are expanded. Considering
the ¢, r, 6 and z components in that order, we get

From [§| to there are only 3 non-zero I'” ., so the expression on the
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As Moore points out, these are not the same components that we’d get if
we converted Maxwell’s equations to the usual cylindrical coordinate sys-
tem in which the basis vectors are unit vectors, since in the cylindrical co-
ordinate basis, the 6 basis vector is ey = ro. However, I did check that if
you substitute[I6|and [I§]into[26]and work out all the derivatives, it is indeed
true that
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Presumably the other 3 equations also work out to the 3 components of
if we work out the components of B; in the cylindrical basis and then
substitute them in and do the derivatives, though I'm too lazy to check this.
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