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We can use the Newtonian calculation of the tidal effect to derive the

analogous condition in general relativity. In the Newtonian case, the ob-
jects in the falling box follow paths given by Newton’s laws of motion in a
gravitational field. In GR, the presence of mass causes spacetime to curve,
and freely falling objects follow geodesics determined by that curvature.
The geodesic equation in terms of Christoffel symbols is

(0.1) ẍm +Γ
m
i jẋ

jẋi = 0

where the dot indicates a derivative with respect to proper time τ .
The idea is to explore this equation for two objects that momentarily

follow geodesics that are parallel and separated by an infinitesimal distance,
which we call ni. That is, we write the path followed by our reference object
as xk (τ), where τ is that object’s proper time, and by the other object as
xi (τ). The separation is thus

(0.2) ni (τ)≡ xi (τ)− xk (τ)

Note that it is the same proper time (that is, the proper time of the ref-
erence object) that is used in all three terms. Although both xi and xi are
four-vectors and we can in principle use any quantity such as τ to parame-
trize them, the difference of these two vectors where we use the proper time
of one object to parametrize both vectors will not, in general, be a four-
vector. It would be a four-vector only if the two geodesics are parallel, in
which case the proper times of both objects would be the same.

However, for the purposes of the argument here, we are considering only
a little chunk of spacetime in which the two geodesics happen to be sepa-
rated by the infinitesimal distance ni and in that location the two geodesics
are assumed to be virtually parallel, so the proper time τ can be used as the
proper time of both objects. For that small section of spacetime, ni can be
taken as a four-vector. Under these conditions, the geodesic equations for
the two objects are:
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ẍm +Γ
m
i jẋ

jẋi = 0(0.3)

ẍm +Γ
m
i jẋ

jẋi = 0(0.4)

The conditions of these equations allow us to take the derivatives in both
cases with respect to the same proper time τ . The Christoffel symbol in the
second equation is evaluated at xi, that is

(0.5) Γ
m
i j = Γ

m
i j

(
xk (τ)

)
Now since the barred coordinates are separated from the reference coor-

dinates by an infinitesimal amount, we can get the barred Christoffel sym-
bols from the unbarred ones by using a Taylor expansion. That is

Γ
m
i j = Γ

m
i j

(
xk (τ)+nk (τ)

)
(0.6)

= Γ
m
i j

(
xk (τ)

)
+n`∂`Γm

i j

(
xk (τ)

)
+ . . .(0.7)

By putting 0.2 and 0.7 into 0.4 we can eliminate all barred terms:

(0.8) ẍm + n̈m +
(

Γ
m
i j +n`∂`Γm

i j

)(
ẋ j + ṅ j)(ẋi + ṅi)= 0

Multiplying this out and ignoring all terms of second order or higher in n
and its derivatives, we find

(0.9) ẍm +Γ
m
i jẋ

jẋi + n̈m +Γ
m
i j
(
ẋ jṅi + ṅ jẋi)+ ẋiẋ jn`∂`Γm

i j = 0

We can use 0.3 to eliminate the first two terms and the symmetry of Γm
i j =

Γm
ji to simplify the third term to get

(0.10) n̈m +2Γ
m
i jẋ

jṅi + ẋiẋ jn`∂`Γm
i j = 0

Using the four-velocity ui ≡ ẋi we can write this as

(0.11) n̈m +2Γ
m
i ju

jṅi +uiu jn`∂`Γm
i j = 0

We now have an expression for n̈m, but as usual, this isn’t the total deriv-
ative of the four-vector n, since its derivative could also get a contribution
from the change of the basis vectors ei as the object moves along its geo-
desic. To get the total derivative, we have
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(0.12) ṅ =
d

dτ

(
niei
)
= ṅiei +niėi

From the definition of the Christoffel symbols, we have

(0.13)
∂ei

∂x j = Γ
k
i jek

so we can use the chain rule to write

(0.14) ėi = ẋ j
∂ jei = u j

Γ
k
i jek

so

ṅ = ṅiei +niu j
Γ

k
i jek(0.15)

= ṅiei +nku j
Γ

i
k jei(0.16)

ṅi = ṅi +nku j
Γ

i
k j(0.17)

The result 0.17 applies to any four-vector n. Since we’re still dealing with
the condition that n is a four-vector, its derivative with respect to proper time
is also a four-vector, so we can find the second absolute derivative by using
0.17 on ṅ:

n̈i =
dṅi

dτ
+ ṅku j

Γ
i
k j

(0.18)

=
d

dτ

[
ṅi +nku j

Γ
i
k j

]
+
[
ṅk +n`u j

Γ
k
` j

]
um

Γ
i
km

(0.19)

= n̈i + ṅku j
Γ

i
k j +nku̇ j

Γ
i
k j +nku j

Γ̇
i
k j + ṅkum

Γ
i
km +n`u jum

Γ
k
` jΓ

i
km

(0.20)

We can use the chain rule on the third term:

Γ̇
i
k j = ẋ`∂`Γi

k j = u`∂`Γi
k j

Substituting this and 0.11 into 0.20 we get

n̈i =−2Γ
i
` ju

jṅ`−umu jn`∂`Γi
m j + ṅku j

Γ
i
k j +nku̇ j

Γ
i
k j

+nku ju`∂`Γi
k j + ṅkum

Γ
i
km +n`u jum

Γ
k
` jΓ

i
km(0.21)
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By relabelling indices, we see that the first term cancels the third and
sixth terms, so we have

(0.22) n̈i =−umu jn`∂`Γi
m j +nku̇ j

Γ
i
k j +nku ju`∂`Γi

k j +n`u jum
Γ

k
` jΓ

i
km

We can write 0.3 in terms of the four-velocity:

(0.23) u̇ j =−Γ
j
m`u

`um

and insert this into the second term to get

(0.24)
n̈i =−umu jn`∂`Γi

m j−nku`um
Γ

j
m`Γ

i
k j +nku ju`∂`Γi

k j +n`u jum
Γ

k
` jΓ

i
km

Now we need to relabel indices so that we can factor out umu jn`. We can
do this by the following switches:

Term 2: j→ k; `→ j; k→ `

Term 3: `→ m; k→ `

Term 4: No changes needed.

We get:

(0.25) n̈i = umu jn`
[
∂mΓ

i
` j−∂`Γ

i
m j +Γ

k
` jΓ

i
km−Γ

k
m jΓ

i
`k

]
Since this is still a tensor equation, the quantity in brackets is a tensor

and is called the Riemann tensor.

(0.26) Ri
j`m ≡±

[
∂mΓ

i
` j−∂`Γ

i
m j +Γ

k
` jΓ

i
km−Γ

k
m jΓ

i
`k

]
We’ve written a ± in the definition, since some books use one sign while

others use the other one. Moore uses the minus sign, so we’ll stick with that
in these posts. We now have a compact expression for geodesic deviation:

(0.27) n̈i =−Ri
j`mumu jn`

This is the equation of geodesic deviation in general relativity. Its in-
terpretation is that if the relative acceleration n̈i = 0 then spacetime is flat;
otherwise it’s curved. Since the only quantity in this equation that depends
intrinsically on the metric is Ri

`m j, we see that if the Riemann tensor is
identically zero, spacetime is flat, but if only one component of this tensor



RIEMANN TENSOR: DERIVATION 5

is non-zero, spacetime is curved. We’ll deal with some more properties and
examples of the Riemann tensor in future posts.
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