PLANE SYMMETRIC SPACETIME
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Reference: Moore, Thomas A., A General Relativity Workbook, Univer-
sity Science Books (2013) - Chapter 23; Problem 23.1.

A static, plane-symmetric spacetime is one in which spacetime is inde-
pendent of time (static) and is composed of a set of planes, where each plane
is labelled by a coordinate z. Within each plane, points are labelled by co-
ordinates y and 2z and because the spacetime is static, the distance between
two points depends only on these two coordinates:

[dsz} .= dy2 +dz? (D)

where the subscript  denotes the plane with coordinate x.
If the = basis vector e, is everywhere perpendicular to e, and e, (and
e, L e.), then the spatial off-diagonal components of the metric are zero

gij = €€ ()
Jzy = gmz:gyz:() 3)

The general metric between any two spacetime points is then

ds? = gudt* + 2g,dt dz + do’ + dy* + d2? (4)

Because the spacetime is static, a displacement forward in time by dt
should give the same separation as a displacement backwards by the same
amount —dt. Because of this symmetry, the 2¢;,dt dx term should remain
unchanged when dt is replaced by —dt. However, since the metric is in-
dependent of time, g, (t) = g1 (—1), so the only way we can satisfy the
symmetry requirement is if g, = 0. Thus the plane-symmetric metric is
symmetric:

ds? = gy dt® 4+ da® + dy? + d=* (5)

Further, g4+ can depend at most on x alone.
To work out the consequences of this metric, we need to evaluate the

Christoffel symbols and Ricci tensor. The Christoffel symbol worksheet is:
1
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Fgo = ﬁAO F(I)O = F81 = ﬁAl Fgo = ng = ﬁAZ Fgo = f83 - ﬁ“b
1= ﬁBO 0, = ﬁCO S, = ﬁDO other F?w =0
Lo = Fio - ﬁBO F%l - %Bl F%z - 131 - ﬁB2 F%3 - Fél - LBB3
T}, = 754 I, =—55C Il =—55Di other '}, =0
I = F%o - %CO F%z =15 = %Cl F%z - %OZ F%z = F%3 - %03
I}, =54, I =—5D I3 =—»D> other I, , =0
F83 - Fgo - %DO F% = F§1 - %Dl F%3 - F%z - %DZ F%3 - %D3
I3 = 5543 I, = — 5553 I35, =—55C5 other I, , = 0
In this case (xo,x ,xz,x3) = (t,z,y,z) and
A = —gu(x) (6)
B =1 @)
cC =1 (8)
D =1 9)

Thus the only nonzero symbols will be those involving A1, since all other

derivatives are zero. These are

1 1 dA

o _ o _ L, Lbaa

Do = T =574 =577
1 1dA

1 _ —

Too 5 2 dx

(10)

(11)

[We can use the total derivative rather than partial because A depends

only on z.]

From the Ricci tensor worksheet, the only nonzero components of R,

are those involving Ay or A; only, so we see that

Roo = ﬁfln—ﬁfﬁ
1A 1 (dAN?
B 5@‘@(%)
By _lle_A+L(%)2
2dr?  4A \ dx

(12)

(13)

(14)

with all other R, = 0. In flat space, all components satisfy 7, = 0 so

these two components both give the same condition on A:
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A 1 [dA\?
W—ﬂ(a> (1)

To examine the structure of the spacetime, we need the full Riemann
tensor, which is defined in terms of the Christoffel symbols:

Rez//\a - geuRl;AU = Gep [_aarlﬁ\,/ + (9)\1_"%1, - Flf\yrlfw + r@urlﬁm] (16)

We can work out the terms in R’f/ ) using|10jand First, we’ll expand
the implied sums and label the terms:

n_w
_Fl&yria = _FO)\VF%O' _le\vrqa (17)

3] 4]

fpt O

50, = oot a17, (18)

[5] [6]
—0,Th 40", = —9,I +0,I'" (19)

ol '\ Moy ol \y Moy

Next, we’ll identify the index combinations that give (potentially) nonzero
values for components of R’f/ \o 1N each term, using the fact that only F(I)O

and F(I)O are nonzero, and that only the derivative with respect to = (index 1)
is nonzero.

e Term 1:
LW v Ao
1 100
1 01 0
01 0 1
0 01 1
e Term 2:
LW v oA o
00 0O
e Term 3:
W v Ao
0 011
1 0 0 1
0110
11 00
e Term 4:
LW v Ao
00 0O
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e Term 5:
W v Ao
0 01 1
01 0 1
1 0 0 1
e Term 6:
W v Ao
0 01 1
01 10
1 010

From these tables, we see that there are 7 unique index combinations
that can potentially give nonzero Riemann tensor components R’f/ v We
have (remember that the Christoffel symbols are symmetric in their lower 2

diace TH  TH Y.
indices: I, =T%):

Rhgy = —T0Too+T0To0=0 (20)
Ry = —ToTg+T000, —0ilg, +aiTg, =0 (21)
Ryoo = —Toollo+ Tl =0 (22)
Rog = —ToiToo+diTog (23)
Roor = +T0:To0—01T00 = =Ry (24)
Ry = —ToTg—aiTg, (25)
Ry = ToIg+aiTg = —R (26)

Thus only the last 4 can potentially be nonzero. To go further, we need
the derivative terms:

1 dA 2 1 d2A
T 2z \ar ) T2a a2 @D
1, 1
— —EA]-FEAH (28)
1d?2A 1
IThy, = === =_-4 2
22 Y2 A (29)

Now we can use [10]and [TT]to write these components in terms of A:
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Rog = —ToiToo+aiTg0 = 4AA +5 All (30)
1 1
Ry = —Rbio= 4AA%—§A11 (31)
1 1
0 0 0 2
= IO —ord =—A72— — A 2
R o101 — il A2 T 54 (32)
1 1
Ry = —RYg = 4A2A 2AA“ (33)

To get the Riemann tensor with all 4 indices lowered, we multiply by the
metric:

Repro = geu i), (34)

Here, the only two metric components we need are goo = —A and g1 = 1
S0

Rioo = gnuRp= 4AA 1+5 An (35)

Rigor = gnRo = 4AA] - —An (36)

Roior = gooR%o; = 4AA + —An (37)

Roo = gooR10= 7541~ 3An 38)

Note that in this lowered form, the symmetries of the Riemann tensor are
obeyed: RW,)\J = —Ryu,\a = _R;u/a)\-

Finally, if we impose the condition [15|in the form A = ﬁA%, we find
that all four of these components are zero, thus making the entire Riemann
tensor zero, indicating that spacetime is completely flat. [There are a lot of
indices flying about here, so I'm hoping I got them all right...]
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