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Another example of a solution to the Einstein equation is a simple model

of a cosmic string. Cosmic strings are postulated objects that are left over
from the big bang. They are virtually one-dimensional structures with a
radius much smaller than an atomic nucleus, but with lengths of hundreds
of thousands of light years. As a model of a cosmic string, suppose we have
an infinite, straight string stretching along the z axis, and that the string
is axially symmetric, that is, that its structure depends only on the radial
coordinate r measured from the z axis. The metric describing the string is a
generalization of the cylindrical coordinate system:

(0.1) ds2 =−dt2 +dr2 + f 2 (r)dφ
2 +dz2

For an ordinary cylindrical system in flat space, f (r) = r.
[The interpretation of the r coordinate is qualitatively different from the

Schwarzschild metric, where we assumed spherical symmetry and used this
to write down the angular components of the metric as those that apply in
flat space, that is r2dθ 2 + r2 sin2

θdφ 2. This choice results in the radial
coordinate r being a circumferential coordinate, in that the circumference
of a circle with radial coordinate r is 2πr, but the distance from the origin
to a point on the circle is not r. In the cylindrical metric here, r is not
a circumferential coordinate because the metric component gφφ = f 2 6= 1,
so the circumference of a circle of radius r is 2π f (as you can verify by
setting dt = dr = dz = 0 and integrating over φ from 0 to 2π for a fixed r).
However, because grr = 1, the r coordinate here does represent the actual
distance from the z axis to a point on a circle with coordinate r.]

We take the stress-energy tensor to be

(0.2) T t
t = T z

z =−σ (r)

[Moore doesn’t explain where these come from, but we’ll just accept this
for now.] From the definition of the stress-energy tensor T tt = −T t

t = σ is
the energy density.

The Einstein equation for a perfect fluid is
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(0.3) Rµν = 8πG
(

Tµν −
1
2

gµνT
)

The scalar T is

(0.4) T = T µ

µ = T t
t +T z

z =−2σ

The non-zero components of Tµν can be found from 0.2 by lowering the
first index:

Ttt = gttT t
t = σ(0.5)

Tzz = gzzT z
z =−σ(0.6)

From 0.3 we therefore have

Rtt = 8πG
(

Ttt−
1
2

gttT
)

(0.7)

= 8πG(σ −σ) = 0(0.8)
Rrr = 8πG(0+grrσ)(0.9)

= 8πGσ(0.10)
Rφφ = 8πG

(
0+gφφ σ

)
(0.11)

= 8πG f 2
σ(0.12)

Rzz = 8πG(−σ +gzzσ) = 0(0.13)

All off-diagonal components of Rµν are zero since both Tµν and gµν are
diagonal. Thus

(0.14) Rrr =
Rφφ

f 2

Using the Ricci tensor worksheet we can work out Rµν in terms of gµν .
The only non-zero terms are those involving a derivative of gφφ with respect
to r on its own (that is, not multiplied by some other derivative), or in terms
of the notation of the worksheet, those terms involving either C1 or C11 on
their own. We have (where a subscript 1 indicates a derivative with respect
to r):
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C = f 2(0.15)

C1 =
d
(

f 2)
dr

= 2 f f1(0.16)

C11 =
d (2 f f1)

dr
= 2 f 2

1 +2 f f11(0.17)

The only components of Rµν involving these two derivatives on their own
are Rrr and Rφφ :

Rrr = − 1
2C

C11 +
1

4C2C2
1(0.18)

= −
f 2
1

f 2 −
f11

f
+

4 f 2 f 2
1

4 f 4(0.19)

= − f11

f
(0.20)

Rφφ = − f 2
1 − f f11 +

4 f 2 f 2
1

4 f 2(0.21)

= − f f11(0.22)
= f 2Rrr(0.23)

Thus 0.14 is satisfied here as well. [Note that there are a couple of errors
in Moore’s problem statement - see the errata list here.] Combining 0.10
and 0.20 gives

(0.24) f11 =
d2 f
dr2 =−8πG f (r)σ (r)

Moore now says that we require the metric to be non-singular at r = 0
(actually he says ’non-singular at the origin’ although I assume he means
’non-singular at all points on the z axis, since there’s nothing special about
z = 0 here). It’s not entirely clear to me why we would require this since the
Schwarzschild metric is singular at r = 0. He also says that this requirement
leads to the metric reducing to the flat space metric as r→ 0. Again, this
isn’t exactly obvious; there are lots of metrics that are finite at r = 0 so why
choose flat space? Anyway, let’s plow onwards...

If we require f (r)→ r as r→ 0 to give us the flat, cylindrical metric near
the z axis, then f1 =

d f
dr → 1 as r→ 0. We can then integrate 0.24 to give,

for points outside the string’s radius rs:
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f1 = −4G
ˆ rs

0
2π f (r)σ (r)dr+A(0.25)

= −4Gµ +A(0.26)

where A is a constant of integration, rs is the radius of the string and

(0.27) µ (rs)≡
ˆ rs

0
2π f (r)σ (r)dr

is the string’s energy density (energy per unit length). [Recall from above
that the circumference of a circle of radius r is 2π f and σ is the energy
density (per unit volume), so the energy in a cylindrical shell of radius r,
thickness dr and unit length is 2π f (r)σ (r)dr.] In the limiting case of no
string at all, rs = 0 and the metric reduces to flat space where f1 = 1 so
A = 1 and we have for r > rs:

(0.28)
d f
dr

= 1−4Gµ

Since µ is a constant for r > rs, we can integrate this directly to get

(0.29) f (r) = (1−4Gµ)r+K

where K is a constant of integration. For very small r we should have
f → r and since rs is very small, we’d expect µ to be small, so K would be
close to zero.

The resulting metric is

(0.30) ds2 =−dt2 +dr2 +(1−4Gµ)2 r2dφ
2 +dz2

We can redefine the angular coordinate φ (in a way similar to the re-
definition of the time coordinate used in deriving Birkhoff’s theorem) by
defining

(0.31) φ̃ ≡ (1−4Gµ)φ

to get what appears to be a flat space metric:

(0.32) ds2 =−dt2 +dr2 + r2dφ̃
2 +dz2

However, remember that the radial coordinate r is not the same as that
used in flat space, since the circumference of a circle of radius r is given by
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2π (1−4Gµ)r, so is actually slightly smaller than 2πr. Also, the new axial
coordinate φ̃ covers 2π (1−4Gµ)< 2π for a complete circle.


