
EIGENVALUES AND EIGENVECTORS - EXAMPLES

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog and

include the title or URL of this post in your comment.
Post date: 14 September 2021.
Here are a few examples of calculating eigenvalues and eigenvectors.

Example 1. Find the eigenvalues and normalized eigenvectors of

Ω =

 1 3 1
0 2 0
0 1 4

 (1)

The eigenvalues are solutions of det(Ω−λI) = 0 which gives, calculat-
ing the determinant down the first column:

(1−λ)(2−λ)(4−λ) = 0 (2)
λ= 1,2,4 (3)

The eigenvectors vi satisfy (Ω−λiI)vi = 0vi for each eigenvalue λi. We
get, for λ1 = 1:  0 3 1

0 1 0
0 1 3

 a
b
c

=

 0
0
0

 (4)

Solving, we find

b= c= 0 (5)
a= anything (6)

Thus a normalized eigenvector is

v1 =

 1
0
0

 (7)

For λ2 = 2, we have
1

https://physicspages.com
https://physicspagescomments.wordpress.com
http://physicspages.com/pdf/Mathematics/Eigenvalues%20and%20eigenvectors.pdf


EIGENVALUES AND EIGENVECTORS - EXAMPLES 2

 −1 3 1
0 0 0
0 1 2

 a
b
c

=

 0
0
0

 (8)

Solving:

b=−2c (9)
a= 3b+ c (10)
=−5c (11)

Choosing c= 1 and normalizing, we have

v2 =
1√
30

 −5
−2
1

 (12)

Finally, for λ3 = 4 we have −3 3 1
0 −2 0
0 1 0

 a
b
c

=

 0
0
0

 (13)

Solving:

b= 0 (14)
3a= 3b+ c (15)

= c (16)

Choosing a= 1 and normalizing:

v3 =
1√
10

 1
0
3

 (17)

The matrix Ω is not Hermitian since Ω† 6= Ω, and we can see by inspec-
tion that the eigenvectors are not orthogonal.

Example 2. Now we have

Ω =

 0 0 1
0 0 0
1 0 0

 (18)

It is hermitian since Ω† = ΩT = Ω. The eigenvalues are found from
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(−λ)3 +λ= 0 (19)
λ= 0,−1,1 (20)

Solving for the eigenvectors in the same way as in the last example, we
get, for λi = 0,−1,1 in that order:

v1 =

 0
1
0

 (21)

v2 =
1√
2

 −1
0
1

 (22)

v3 =
1√
2

 1
0
1

 (23)

The eigenvectors are orthogonal, as required for a hermitian matrix. We
can diagonalize Ω by means of a unitary transformationU , where the columns
of U are the eigenvectors of Ω. We have

U =

 0 − 1√
2

1√
2

1 00
0 1√

2
1√
2

 (24)

U† =

 0 10
− 1√

2
0 1√

2
1√
2

0 1√
2

 (25)

We can verify by direct matrix multiplication that

U†
ΩU =

 0 0 0
0 −1 0
0 0 1

 (26)

Note that the order of eigenvalues in the diagonal is determined by the
order in which we place the columns in U .

Example 3. We now have the hermitian matrix

Ω =
1
2

 2 0 0
0 3 −1
0 −1 3

 (27)
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The eigenvectors follow from

(1−λ)

[(
3
2
−λ
)2

− 1
4

]
= 0 (28)

λ= 1,1,2 (29)

Thus the eigenvalue λ = 1 is degenerate. We can find the eigenvector
corresponding to λ3 = 2 in the usual way and get

v3 =
1√
2

 0
−1
1

 (30)

The other two eigenvectors span a 2-d subspace that must be orthogonal
to v3 (since Ω is hermitian; in the more general case, the orthogonality is
not guaranteed). We can therefore find two vectors v1,v2 in the subspace by
requiring 〈v1,v3〉= 〈v2,v3〉= 0. That is, if

v1,2 =

 a
b
c

 (31)

we must have

a= anything (32)
b= c (33)

These two equations can be satisfied by a variety of v1 and v2, but if
we want 〈v1,v2〉 = 0 as well, we can choose a = 1 and b = c = 1, then
normalize, to get

v1 =

 1
0
0

 (34)

v2 =
1√
2

 0
1
1

 (35)

The 2-d subspace spanned by v1 and v2 is therefore

v = av1 + bv2 =

 a
b
b

 (36)
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Thus any normalized eigenvector of λ= 1 has the form

e=
1√

a2 +2b2

 a
b
b

 (37)

Example 4. Now let’s look at a non-hermitian matrix:

Ω =

[
4 1
−1 2

]
(38)

The eigenvalues are found from

(4−λ)(2−λ)+1 = 0 (39)

(λ−3)2 = 0 (40)
λ= 3,3 (41)

Thus there is one degenerate eigenvalue. To find the eigenvector(s), we
solve (Ω−λI)v = 0 as usual:[

1 1
−1 −1

][
a
b

]
= 0 (42)

This gives only one condition, namely a = −b. Thus there is only one
normalized eigenvector:

v =
1√
2

[
1
−1

]
(43)


