EIGENVALUES AND EIGENVECTORS - EXAMPLES

Link to: physicspages home page.

To leave a comment or report an error, please use the auxiliary blog and include the title or URL of this post in your comment.

Post date: 14 September 2021.

Here are a few examples of calculating eigenvalues and eigenvectors.

Example 1. Find the eigenvalues and normalized eigenvectors of

$$\Omega = \begin{bmatrix}
1 & 3 & 1 \\
0 & 2 & 0 \\
0 & 1 & 4
\end{bmatrix}$$
(1)

The eigenvalues are solutions of $\det(\Omega - \lambda I) = 0$ which gives, calculating the determinant down the first column:

$$(1 - \lambda)(2 - \lambda)(4 - \lambda) = 0$$
 (2)

$$\lambda = 1, 2, 4 \tag{3}$$

The eigenvectors v_i satisfy $(\Omega - \lambda_i I) v_i = 0v_i$ for each eigenvalue λ_i . We get, for $\lambda_1 = 1$:

$$\begin{bmatrix} 0 & 3 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \tag{4}$$

Solving, we find

$$b = c = 0 \tag{5}$$

$$a =$$
anything (6)

Thus a normalized eigenvector is

$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \tag{7}$$

For $\lambda_2 = 2$, we have

$$\begin{bmatrix} -1 & 3 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 (8)

Solving:

$$b = -2c \tag{9}$$

$$a = 3b + c \tag{10}$$

$$= -5c \tag{11}$$

Choosing c = 1 and normalizing, we have

$$v_2 = \frac{1}{\sqrt{30}} \begin{bmatrix} -5\\ -2\\ 1 \end{bmatrix} \tag{12}$$

Finally, for $\lambda_3 = 4$ we have

$$\begin{bmatrix} -3 & 3 & 1 \\ 0 & -2 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 (13)

Solving:

$$b = 0 \tag{14}$$

$$3a = 3b + c \tag{15}$$

$$=c ag{16}$$

Choosing a = 1 and normalizing:

$$v_3 = \frac{1}{\sqrt{10}} \begin{bmatrix} 1\\0\\3 \end{bmatrix} \tag{17}$$

The matrix Ω is not Hermitian since $\Omega^{\dagger} \neq \Omega$, and we can see by inspection that the eigenvectors are not orthogonal.

Example 2. Now we have

$$\Omega = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{bmatrix}$$
(18)

It is hermitian since $\Omega^\dagger=\Omega^T=\Omega.$ The eigenvalues are found from

$$(-\lambda)^3 + \lambda = 0 \tag{19}$$

$$\lambda = 0, -1, 1 \tag{20}$$

Solving for the eigenvectors in the same way as in the last example, we get, for $\lambda_i = 0, -1, 1$ in that order:

$$v_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \tag{21}$$

$$v_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\0\\1 \end{bmatrix} \tag{22}$$

$$v_3 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\1 \end{bmatrix} \tag{23}$$

The eigenvectors are orthogonal, as required for a hermitian matrix. We can diagonalize Ω by means of a unitary transformation U, where the columns of U are the eigenvectors of Ω . We have

$$U = \begin{bmatrix} 0 & -\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \\ 1 & 00 \\ 0 & \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \end{bmatrix}$$
 (24)

$$U^{\dagger} = \begin{bmatrix} 0 & 10 \\ -\frac{1}{\sqrt{2}} & 0\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0\frac{1}{\sqrt{2}} \end{bmatrix}$$
 (25)

We can verify by direct matrix multiplication that

$$U^{\dagger} \Omega U = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (26)

Note that the order of eigenvalues in the diagonal is determined by the order in which we place the columns in U.

Example 3. We now have the hermitian matrix

$$\Omega = \frac{1}{2} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -1 & 3 \end{bmatrix}$$
 (27)

The eigenvectors follow from

$$(1-\lambda)\left[\left(\frac{3}{2}-\lambda\right)^2 - \frac{1}{4}\right] = 0\tag{28}$$

$$\lambda = 1, 1, 2 \tag{29}$$

Thus the eigenvalue $\lambda = 1$ is degenerate. We can find the eigenvector corresponding to $\lambda_3 = 2$ in the usual way and get

$$v_3 = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \tag{30}$$

The other two eigenvectors span a 2-d subspace that must be orthogonal to v_3 (since Ω is hermitian; in the more general case, the orthogonality is not guaranteed). We can therefore find two vectors v_1, v_2 in the subspace by requiring $\langle v_1, v_3 \rangle = \langle v_2, v_3 \rangle = 0$. That is, if

$$v_{1,2} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \tag{31}$$

we must have

$$a =$$
anything (32)

$$b = c \tag{33}$$

These two equations can be satisfied by a variety of v_1 and v_2 , but if we want $\langle v_1, v_2 \rangle = 0$ as well, we can choose a = 1 and b = c = 1, then normalize, to get

$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \tag{34}$$

$$v_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\1\\1 \end{bmatrix} \tag{35}$$

The 2-d subspace spanned by v_1 and v_2 is therefore

$$v = av_1 + bv_2 = \begin{bmatrix} a \\ b \\ b \end{bmatrix}$$
 (36)

Thus any normalized eigenvector of $\lambda = 1$ has the form

$$e = \frac{1}{\sqrt{a^2 + 2b^2}} \begin{bmatrix} a \\ b \\ b \end{bmatrix} \tag{37}$$

Example 4. Now let's look at a non-hermitian matrix:

$$\Omega = \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix} \tag{38}$$

The eigenvalues are found from

$$(4 - \lambda)(2 - \lambda) + 1 = 0 \tag{39}$$

$$(\lambda - 3)^2 = 0 \tag{40}$$

$$\lambda = 3,3 \tag{41}$$

Thus there is one degenerate eigenvalue. To find the eigenvector(s), we solve $(\Omega - \lambda I) v = 0$ as usual:

$$\begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = 0 \tag{42}$$

This gives only one condition, namely a=-b. Thus there is only one normalized eigenvector:

$$v = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \tag{43}$$