EVEN AND ODD SOLUTIONS TO THE SCHRÖDINGER EQUATION

Link to: physicspages home page.

To leave a comment or report an error, please use the auxiliary blog and include the title or URL of this post in your comment.

Post date: 12 Jan 2021.

The time-independent Schrödinger equation can be solved by separation of variables, with the spatial part satisfying

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V(x)\psi = E\psi\tag{1}$$

with V(x) being the potential function and E being one of the allowable energies.

If the potential is even, so that V(x) = V(-x), then $\psi(x)$ can be taken as even or odd. This follows by considering the Schrödinger equation with x replaced by -x:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(-x)}{dx^2} + V(x)\psi(-x) = E\psi(-x)$$
 (2)

Thus $\psi(-x)$ satisfies the same equation as $\psi(x)$ for an even potential, so another pair of solutions must be (since the equation is linear) $\psi(-x) \pm \psi(x)$. Taking the + sign, we get the function $\psi_+(x) = \psi(-x) + \psi(x) = \psi_+(-x)$, which is an even function. Taking the - sign we get $\psi_-(x) = \psi(-x) - \psi(x) = -\psi_-(x)$, which is an odd function. Thus the general solution is a linear combination of even and odd functions.

PINGBACKS

Pingback: Finite square well - bound states, even wave functions Pingback: Finite square well - bound states, odd wave functions