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The momentum operator in one dimension is

p=—ihd/dx (1)

Since momentum is an observable quantity, its operator should be her-
mitian. To show this, we must show that

(@1pY) = (Do1Y) 2)

for some functions that tend to zero at infinity. Writing this in terms of
integrals, we have
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where in the second line, we used the condition that ¢ and ) are zero at
infinity, which are the limits of the integration.

However, if we try to find the eigenvalues and eigenfunctions of p, we
run into a bit of a problem. We try to solve, for some eigenvalue p:

pf = pf (7N
. d
—Zh%f = pf (8)
This has the formal solution
fo(x) = AePr/T )

for some constant A. Ordinarily, at this stage, we would impose some
boundary condition on the solution to obtain acceptable values of p. The

problem is that we’d like to define this function over all = and, if we try to
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do this, the function is not normalizable for any value of p. At first glance,
we might think that if we chose p to be purely imaginary as in p = au, it
might work since we get

fx) = Aeox/h (10)

but this tends to infinity at large negative = so that doesn’t work. In fact
if p has a non-zero imaginary part, f(x) goes to infinity at one end of its
domain. So we’re restricted to looking at real values of p.

In that case, f(x) is periodic and thus is still not normalizable. Thus there
are no eigenfunctions of the momentum operator that lie in Hilbert space
(which, remember, is the vector space of square-integrable functions).

What happens if do the normalization integral anyway? That is, we try

| b @) i )= [ e, an

By using the variable transformation £ = x/h, we get

/oo Io, () fp, (2) dw = |A|27§/oo eiP2=P1)¢ ¢ (12)

It’s at this point that we invoke the Fourier transform involving the Dirac
delta function that we obtained a while back. Using this, we can write the
integral as a delta function, and we get

| F @) o (@) =27 | AP RS (2~ 1) (13)

This is sort of like a normalization condition, in that the integral is zero
when p; # p», and non-zero (infinite, in fact) if p; = p,. In fact, if we take
the constant A to be

1

A= 14
\2mh (14
and use the bra-ket notation for the integral, we can write
1
<fp1’fp2> =27rﬁh5(p2—p1) (15)
=d(p2—p1) (16)

We can also express an arbitrary function g(z) as a Fourier transform
over p by writing
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o) = [ cw)fp@rdp (7
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From Plancherel’s theorem, we can invert this relation to get ¢ (p):

c(p) = @ | _ameea (20)
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With these definitions, the eigenfunctions of the momentum operator are
therefore

1
\2mh

In general, hermitian operators with continuous eigenvalues don’t have
normalizable eigenfunctions and have to be analyzed in this way. In par-
ticular, the hamiltonian (energy) of a system can have an entirely discrete
spectrum (infinite square well or harmonic oscillator), a totally continuous
spectrum (free particle, delta function barrier or finite square barrier) or a
mixture of the two (delta function well or finite square well).

eip:ﬂ/h (23)
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