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We’ve seen that the eigenfunctions of two-dimensional angular momen-
tum have the form
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where
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In 2 dimensions and polar coordinates, the hamiltonian can be written as
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If the potential is radially symmetric, that is, it doesn’t depend on ¢, then
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In polar coordinates, the angular momentum operator has the form
L 0
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Thus L, commutes with every term in the hamiltonian 4} so for V =
V (p), we find

meaning that we can find a set of functions that are simultaneously eigen-
functions of both A and L. Since we already know what the most general
eigenfunctions of L, are (eqn/[I]), the problem is then to find the radial func-
tion R (p) so that

H[R(p) Pm (¢)] = ER(p)®m () @


https://physicspages.com
https://physicspagescomments.wordpress.com
http://physicspages.com/pdf/Quantum%20mechanics/Eigenvalues%20of%20two-dimensional%20angular%20momentum.pdf
http://physicspages.com/pdf/Quantum%20mechanics/Eigenvalues%20of%20two-dimensional%20angular%20momentum.pdf
http://physicspages.com/pdf/Quantum%20mechanics/Rotations%20through%20a%20finite%20angle%20-%20use%20of%20polar%20coordinates.pdf

RADIALLY SYMMETRIC POTENTIALS, ANGULAR MOMENTUM AND CENTRIFUGAL FORCE

If we use M for H and[2] for ® we find that we must solve the differential
equation
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We’ve replaced the partial derivatives in 4| by ordinary derivatives, since

we now have an ODE in one independent variable, namely p.

%R in arising from the %887522 term in , is similar to a

potential term, since it doesn’t involve any derivatives of K. The potential

term is

The term
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We can find the force corresponding to V. by taking the negative gradient,
which in this case amounts to
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Since the quantum angular momentum is ¢, = mh, this can be written as
62
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If the particle is in a circular orbit, then /, = pp where p is its momentum,
so this becomes
2
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Classically, p = pv so this is equivalent to
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F=t" (13)

p
which is the formula for centrifugal force in Newtonian physics.
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