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The Schrodinger equation that we’ve looked at so far involves the wave
function for a single particle moving in a potential. To extend this to multi-
particle systems, we need to make the wave function and the potential func-
tions of the positions of all the particles and the time. Thus the Schrodinger
equation for a system of n particles becomes
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Needless to say, finding solutions of this equation for even as few as 2
particles is extremely difficult. In one case, however, we can make some
progress. In a 2-particle system, if the potential V' is not time-dependent
and depends only on the separation r = r| —r; of the two particles, we can
fiddle with it a bit and produce a simpler form.

First, we define the centre of mass
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If we also introduce the reduced mass
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then we get
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In the coordinates r and R, we can find the gradient operators. We use

a dummy function f to give the gradient something to operate on. We’ll
1


https://physicspages.com
https://physicspagescomments.wordpress.com

SCHRODINGER EQUATION FOR 2 PARTICLES - SEPARATION OF VARIABLES 2

consider the z component and use the chain rule (remember that r; and r;
are independent vectors, each with 3 components, so there is a total of 6
independent position variables):
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The relations for the other two components are similar, so dropping the test
function f , we get for the gradients:
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To get the Laplacian operators, we differentiate the = component expres-
sions above.
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The combination of these two expressions that appears in the Schrodinger
equation is, after cancelling terms and putting the remaining terms over
common denominators:
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The calculations for the other two components are similar, so the final
result is:
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We can now try the usual technique of separation of variables, so we try
=A(r)B(R) (19)
We get, after substituting and dividing through by AB:
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As usual, the terms involving each of the variables » and R must sepa-
rately be equal to constants, so we get
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The first equation is that of a free particle with mass m + m,, while the
second is that of a particle with mass ; moving in a potential V. Thus the
system separates into one equation for a free particle with the total mass
and a position at the centre of mass and another for a single particle with
the reduced mass p. The total energy is & = Ep + E).
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