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This is an example of the geodesic equation in a 2-d space-time (with one
time and one space dimension). The metric is given in a general way as

ds* = —dt* + f* (q) dg® (1)
where ¢ is the generalized spatial coordinate, and f is an arbitrary function.
The metric tensor is then
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Using the time component of the geodesic equation, we set a = ¢ in:
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We can write this in terms of dq/dt:
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That is, the geodesic is the solution of this differential equation.

If we define a new coordinate system in which ¢ =t and ¢’ = F () is the
antiderivative (integral) of f (¢) then we can transform the metric tensor to
this new coordinate system using the standard transformation formula
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By implicit differentiation:
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The only other non-zero derivative is
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The new metric is therefore
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This is the metric of flat space-time in rectangular coordinates. Thus
any metric with g, = —1 represents flat space-time, since f(g) is just a
transformation of the flat metric using different coordinates.



