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In the weak field limit, the Ricci tensor becomes

Rjm =
1
2

(
∂jHm+∂mHj−ηnl∂n∂lhjm

)
(1)

where

Hm ≡ ηnl
(
∂nhlm−

1
2
∂mhnl

)
(2)

and the hij is the perturbation on the flat metric, so that

gij = ηij +hij (3)
Because we can introduce a coordinate transformation for the four coor-

dinates in the form (
x′
)i
= f i

(
xj
)

(4)
there are four degrees of freedom that we can play with in specifying the
form of Hi. It turns out (we may get around to a proof in some future post)
that it is always possible to find a coordinate system in which all Hi = 0. If
we use such a coordinate system then the Ricci tensor is

Rjm =−1
2
ηnl∂n∂lhjm (5)

so the Einstein equation becomes

− 1
2
ηnl∂n∂lhjm = 8πG

(
Tjm−

1
2
ηjmT

)
(6)

Introducing the d’Alembertian operator

�2 ≡ ηnl∂n∂l =−
d2

dt2
+∇

2 (7)

we can write the Einstein equation as

− 1
2
�2hjm = 8πG

(
Tjm−

1
2
ηjmT

)
(8)
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As it stands, this equation is a set of uncoupled differential equations for
the hjm so in principle they can be solved. However, we can invoke another
approximation by assuming that the system is in a steady state so that all
time derivatives are zero. This doesn’t necessarily mean that the masses
are all stationary, since we might have a star rotating at a constant angular
velocity. In such cases, the stress-energy tensor Tjm is constant in time so
we would expect hjm to be independent of time as well. In that case, we
get

∇
2hjm =−16πG

(
Tjm−

1
2
ηjmT

)
(9)

This equation should look familiar from electrodynamics, where it is
formally equivalent to Poisson’s equation for the electrostatic potential in
terms of the charge distribution. In that case we had

∇
2V =−∇ ·E =− ρ

ε0
(10)

where ρ here is the charge density. The solution of this equation is

V (r) =
1

4πε0

∫ 1
|r− r′|

ρ
(
r′
)
d3r′ (11)

By replacing ρ/ε0 with 16πG
(
Tjm− 1

2ηjmT
)

we can find hjm as

hjm = 2G
∫ 2Tjm−ηjmT

|r− r′|
d3r′ (12)

Thus if we know the stress-energy tensor as a function of position, we
can work out the perturbations on the flat metric hjm.

We can look at this equation for the case of a perfect fluid, where the
stress-energy tensor is

Tij = (ρ0 +P0)uiuj +P0gij (13)
where ρ0 and P0 are the fluid’s density and pressure in its rest frame, and
ui is the fluid’s four-velocity in the observer’s frame. We need to find the
numerator of the integrand in 12 for each component. First, we work out
the stress-energy scalar T :

T = gijTij (14)

= (ρ0 +P0)g
ijuiuj +P0g

ijgij (15)

=−(ρ0 +P0)+4P0 (16)
=−ρ0 +3P0 (17)
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since gijuiuj = −1 and gijgij = δii = 4. Since T is a scalar, this result is
valid in all coordinate systems. Also, we haven’t yet used any approxima-
tions, so this result is valid for all perfect fluids, even ones where the density
and pressure are large.

Now let’s assume that ρ0 and P0 are small and so we keep only up to first
order terms, so any product of ρ0 or P0 with hij can be ignored. Thus

Tij−
1
2
gijT ≈ Tij−

1
2
ηijT (18)

2Tij−gijT ≈ 2Tij−ηijT (19)

≈ 2(ρ0 +P0)uiuj +2P0ηij−ηij (−ρ0 +3P0) (20)

= 2(ρ0 +P0)uiuj +ηij (ρ0−P0) (21)

There are 3 cases to consider. First, i= j = t and use ηtt =−1. Further,
we’ll assume that the spatial velocity components are all small, so ut ≈−1
and uiuj ≈ 0 if i and j are both spatial indices.

2Ttt−ηttT = 2(ρ0 +P0)utut+ηtt (ρ0−P0) (22)

= 2(ρ0 +P0)− (ρ0−P0) (23)
= ρ0 +3P0 (24)

Now suppose i= t and j is a spatial index (or vice versa; since everything
is symmetric it makes no difference). Then

2Ttj−ηtjT = 2Ttj (25)

= 2(ρ0 +P0)utuj (26)

=−2(ρ0 +P0)uj (27)

Finally, if both i and j are spatial indices we get, if i 6= j

2Tij−gijT = 2(ρ0 +P0)uiuj +ηij (ρ0−P0) (28)
≈ 0 (29)

since the first term involves the second order term uiuj and in the second
term ηij = 0 if i 6= j.

Now if i= j we get

2Tii−giiT = 2(ρ0 +P0)uiui+ηii (ρ0−P0) (30)
≈ ρ0−P0 (31)
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again, since the first term has the second order factor u2
i and in the second

term ηii =+1 if i is a spatial index.
Therefore, if we know ρ0 and P0 as functions of position we can work

out the perturbations hij to the metric.
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