ISOTHERMAL VERSUS ADIABATIC EXPANSION OF AN IDEAL GAS BUBBLE

Link to: physicspages home page.

To leave a comment or report an error, please use the auxiliary blog.

As a simple example of isothermal versus adiabatic expansion of an ideal gas, suppose that two identical bubbles form at the bottom of a lake. Bubble A rises quickly so that no heat is exchanged with the surrounding water, while bubble B rises slowly (bumping off the leaves of some lakeweed, for example) so that its temperature remains constant (assuming that the lake’s water temperature is the same everywhere).

Bubble A experiences adiabatic expansion, so it obeys the relation

\[PV^\gamma = A \]

for some constant \(A \). Bubble B expands isothermally, so

\[PV = NkT = \text{constant} \]

The initial volumes \(V_0 \) and pressures \(P_0 \) of the two bubbles are the same so

\[A = P_0 V_0^\gamma \]

\[NkT = P_0 V_0 \]

When the bubbles reach the surface of the lake, the pressure has reduced to \(P_1 \) so the volumes of the bubbles are

\[V_A = \left(\frac{P_0}{P_1} \right)^{1/\gamma} V_0 \]

\[V_B = \frac{P_0}{P_1} V_0 \]

Since \(\gamma = (f+2)/f > 1 \) where \(f \) is the number of degrees of freedom and \(P_0 > P_1 \)

\[\left(\frac{P_0}{P_1} \right)^{1/\gamma} < \frac{P_0}{P_1} \]
so $V_B > V_A$. That is, the bubble that rises slowly will be larger than the bubble that rises quickly when they reach the surface.