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The entropy of an ideal gas is given by the Sackur-Tetrode formula:
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where V is the volume, U is the energy, N is the number of molecules,
m is the mass of a single molecule and h is Planck’s constant.

We can apply this formula to the case where we begin with two different
ideal gases A and B, with a total number N of gas molecules divided into
two volumes VA and VB , but at equal pressures and temperatures. Thus the
number of type B molecules can be expressed as a fraction x of the total
number so that NB = xN , and thus NA = (1−x)N . The volumes can be
expressed as the same fractions of the total volume, so that VA = (1−x)V
and VB = xV .

We now remove the partition between the gases and allow them to mix.
Because they were at the same pressure and temperature before they mixed,
both P and T remain unchanged when the gases mix, so the energy of each
gas UA,B also remains unchanged. For each species of gas, the only change
is the volume, which expands to the total volume V .

From 1, the change in entropy in a process where only the volume changes
is

∆S = Sf −Si =Nk ln
Vf
Vi

(2)

The entropy changes for the two gases is therefore

∆SA = (1−x)Nk ln
V

(1−x)V
=−(1−x)Nk ln(1−x) (3)

∆SB = xNk ln
V

xV
=−xNk lnx (4)

Thus the total entropy change after mixing, called, appropriately, the en-
tropy of mixing, is
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∆Smixing =−Nk [x lnx+(1−x) ln(1−x)] (5)

[Note that both logarithms are negative since 0<x< 1, so ∆Smixing > 0.]
If x = 1

2 so that we start out with 2 equal quantities of gases, the formula
reduces to

∆Smixing =Nk ln2 (6)

This is the same result as equation 2.54 in Schroeder, since in that equa-
tion his N is the number of molecules of each gas, not the total number.

It’s worth noting that this formula applies only if the two gases are dif-
ferent, that is, they are distinguishable. If the two gases are the same, there
is essentially no change in entropy when we remove the partition. The
situation is similar to Example 3 in our earlier post which dealt with two
Einstein solids. Before we remove the partition, the gas in each portion
of the volume is overwhelmingly likely to be at or near its most probable
state. After removing the partition, the combined gas is also almost certain
to be at or near the most probable macrostate for the overall system. Since
the gas molecules are indistinguishable, it’s virtually impossible to tell the
difference between the states before and after the partition is removed, so
the entropy of the two systems are virtually identical. [I don’t understand
Schroeder’s explanation following his equation 2.56, where he tries to ex-
plain the difference by doubling the amount of gas in what appears to be a
fixed volume. This isn’t what happens if you start with a fixed amount of
gas divided into two cells and then remove the partition.]

Another way of looking at is as follows. Suppose we start with a number
N of identical molecules. (This argument applies to any system in which
the molecules all have similar properties and interact with each other in the
same way, not just to ideal gases.) The entropy of this system is some value
S0 which may or may not be easy to calculate. Now suppose that at some
point in time, we magically change NA of these molecules to a different
species (which has similar properties to the original species as mentioned).
The entropy will increase by the number of distinct ways we can choose to
locate these NA molecules among the N places available. (The entropy due
to the number of possible locations and momenta of the molecules won’t
change when we replace NA of the molecules by a different species, since
that is already accounted for by S0. We’re interested only in the extra en-
tropy generated by introducing a second species of molecule.) The number
of ways of choosing NA locations from a total of N is just

( N
NA

)
so the

entropy of mixing is
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∆Smixing = k ln
(
N
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)
(7)

Using Stirling’s approximation for large N , and taking NA = (1−x)N
as before, we get

∆Smixing ≈ k ln
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(9)

≈−Nk [x lnx+(1−x) ln(1−x)] (10)

(we’ve neglected the first term in the second line as for large N it is
negligible compared to the last two terms) which is the same as 5.
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