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If we know the energy U of a system as a function of temperature, we

can predict its heat capacity at constant volume using

CV =

(
∂U

∂T

)
N,V

(1)

For an Einstein solid at low temperature, we have

U =Nεe−ε/kT (2)

where ε is the magnitude of one energy quantum. The heat capacity is
therefore

CV =
Nε2

kT 2 e
−ε/kT (3)

We can plot CV /Nk versus kT/ε to see the shape of the curve:
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The Einstein solid has a peak in its heat capacity at a very low tempera-
ture of T = ε/2k (differentiate CV with respect to T and set to zero). How-
ever, as Schroeder points out, this isn’t the observed heat capacity of real
solids at low temperatures.

This method of predicting heat capacity relies on being able to findU (T ),
which so far we’ve been able to do only by finding an expression for the
multiplicity of states Ω in terms of the energy U (and other parameters),
then using that to find the entropy S = k lnΩ, then finding U (T ) from the
expression 1/T = ∂S/∂U . In most cases, finding an expression for the
multiplicity of states is not possible, so we need another method of getting
U (T ) which we’ll hopefully get to eventually.
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