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The main problem with an engine that follows a Carnot cycle is that the

two isothermal stages in the cycle proceed very slowly, since we are at-
tempting to transfer heat between two systems that are almost at the same
temperature. One way of making the cycle go a bit faster is to make the
temperature of the working substance significantly different from that of the
reservoir where it absorbs, and later expels, heat. That is, if the system ab-
sorbs heat Qh from a hot reservoir at temperature Th, then the temperature
of the working substance (typically a gas) when it absorbs heat is Thw <Th.
Similarly, at the other isothermal stage where heat Qc is expelled to the cold
reservoir at temperature Tc, the temperature of the gas is Tcw > Tc.

To make things simple, we’ll assume that the rate of heat transfer is the
same at both the hot and cold reservoirs, and is proportional to the temper-
ature difference between the gas and the reservoir. That is

Qh

∆t
= K (Th−Thw) (1)

Qc

∆t
= K (Tcw−Tc) (2)

where K is a constant and ∆t is taken to be the same for both cases (that
is, the durations of both isothermal stages in the cycle are the same). From
this, we get the relation

Qh

Th−Thw
=

Qc

Tcw−Tc
(3)

If the only entropy that is created in the cycle is along the two isothermal
stages (no entropy is generated along the adiabatic stages) then, since the
state of the engine is the same at the end of the cycle as it was at the start, the
gas must have expelled exactly the same amount of entropy when expelling
heat to the cold reservoir as it absorbed when absorbing heat from the hot
reservoir. That is

Qh

Thw
=

Qc

Tcw
(4)
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so

Qc =Qh
Tcw
Thw

(5)

Combining this with 3 gives

1
Th−Thw

=
Tcw

Thw (Tcw−Tc)
(6)

Tcw =
TcThw

2Thw−Th
(7)

If the time required for the two adiabatic steps is much less than that for
the two isothermal steps, we can work out the power output of the engine.
The work is produced over a time interval of 2∆t and is

P =
W

2∆t
=

1
2∆t

(Qh−Qc) (8)

=
K

2
(Th+Tc−Thw−Tcw) (9)

=
K

2

(
Th+Tc−Thw−

TcThw
2Thw−Th

)
(10)

We can maximize the power output for given values of Th and Tc by
varying Thw. Taking the derivative we get

dP
dThw

=
K

2

[
−1− Tc

2Thw−Th
+

2TcThw
(2Thw−Th)

2

]
= 0 (11)

This can be solved for Thw by multiplying through by (2Thw−Th)
2 and

expanding the terms in the numerator. This results in

K
(
−4T 2

hw+4ThThw+TcTh−T 2
h

)
2(2Thw−Th)

2 = 0 (12)

Solving the quadratic equation and taking the positive root gives

Thw =
1
2

(
Th+

√
ThTc

)
(13)

Substituting this into 7 gives

Tcw =
1
2

(
Tc+

√
ThTc

)
(14)

To find the efficiency we have, using 4
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e = 1− Qc

Qh
(15)

= 1− Tcw
Thw

(16)

= 1− Tc+
√
ThTc

Th+
√
ThTc

(17)

= 1−
(
Tc+

√
ThTc

)(
Th−

√
ThTc

)
T 2
h −ThTc

(18)

= 1− ThTc+(Th−Tc)
√
ThTc−ThTc

Th (Th−Tc)
(19)

= 1−

√
Tc
Th

(20)

For a coal-fired steam turbine with Th= 600◦ C= 873 K and Tc= 25◦ C=
298 K, this gives an efficiency of

e= 0.416 (21)
This is very close to the actual efficiency of about 40% for a real coal-

burning power plant. The ’ideal’ Carnot efficiency for these temperatures
is

e= 1− Tc
Th

= 0.659 (22)


