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Chapter 5.
While studying quantum mechanics, we have made extensive use of the

eigenvalues and eigenvectors (the latter usually called eigenstates in quan-
tum theory) of hermitian operators, since an observable quantity in quantum
mechanics is always represented by a hermitian operator and the spectrum
of possible values for a given observable is equivalent to the set of eigen-
values of that operator.

It’s useful to re-examine eigenvalues and eigenvectors from a strictly
mathematical viewpoint, since this allows us to put precise definitions on
many of the terms in common use. As usual, suppose we start with a vector
space V and an operator T . Suppose there is a one-dimensional subspace
U of V which has the property that for any vector u ∈ U , Tu = λu. That
is, the operator T maps any vector u back into another vector in the same
subspace U . In that case, U is said to be an invariant subspace under the
operator T .

You can think of this in geometric terms if we have some n-dimensional
vector space V , and a one-dimensional subspace U consisting of all vectors
parallel to some straight line within V . The operator T acting on any vector
u parallel to that line produces another vector which is also parallel to the
same line. Of course we can’t push the geometric illustration too far, since
in general V and U can be complex vector spaces, so the result of acting on
u with T might give you some complex number λ multiplied by u.

The equation

Tu= λu (1)

is called an eigenvalue equation, and the number λ ∈ F is called the
eigenvalue. The vector u itself is called the eigenvector corresponding to
the eigenvalue λ. Since we can multiply both sides of this equation by
any number c, any multiple of u is also an eigenvector corresponding to λ,
so any vector ’parallel’ to u is also an eigenvector. (I’ve put ’parallel’ in
quotes, since we’re allowing for multiplication of u by complex as well as
real numbers.)
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It can happen that, for a particular value of λ, there are two or more
linearly independent (that is, non-parallel) eigenvectors. In that case, the
subspace spanned by the eigenvectors is two- or higher-dimensional.

Another way of writing 1 is by introducing the identity operator I:

(T −λI)u= 0 (2)
If this equation has a solution other than u= 0, then the operator T −λI

has a non-trivial null space, which in turn means that T −λI is not injective
(not one-to-one) and therefore not invertible. Also, the eigenvectors of T
with eigenvalue λ are those vectors u in the null space of T −λI .

An important result is

Theorem 1. Suppose λ1, . . . ,λm are distinct eigenvalues of T and v1, . . . , vm
are the corresponding non-zero eigenvectors. Then the set v1, . . . ,vm is lin-
early independent.

Proof. Suppose to the contrary that v1, . . . ,vm is linearly dependent. Then
there must be some subset that is linearly independent. Suppose that k is the
smallest positive integer such that vk can be written in terms of v1, . . . ,vk−1.
That is, the set v1, . . . ,vk−1 is a linearly independent subset of v1, . . . , vm. In
that case, there are numbers a1, . . . ,ak−1 ∈ F such that

vk =
k−1

∑
i=1

aivi (3)

If we apply the operator T to both sides and use the eigenvalue equation,
we have

Tvk = λkvk (4)

=
k−1

∑
i=1

aiTvi (5)

=
k−1

∑
i=1

aiλivi (6)

We can multiply both sides of 3 by λk and subtract to get

(λk−λk)vk =
k−1

∑
i=1

ai (λi−λk)vi (7)

= 0 (8)

Since the set of vectors v1, . . . ,vk−1 is linearly independent, and λk 6= λi
for i = 1, . . . ,k− 1, the only solution of this equation is ai = 0 for i =
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1, . . . ,k− 1. But this would make vk = 0, contrary to our assumption that
vk is a non-zero eigenvector of T . Therefore the set v1, . . . ,vm is linearly
independent. �

It turns out that there are some operators on real vector spaces that don’t
have any eigenvalues. A simple example is the 2-dimensional vector space
consisting of the xy plane. The rotation operator which rotates any vector
about the origin (by some angle other than 2π) doesn’t leave any vector
parallel to itself and thus has no eigenvalues or eigenvectors.

However, in a complex vector space, things are a bit neater. This leads to
the following theorem:

Theorem 2. Every operator on a finite-dimensional, nonzero, complex vec-
tor space has at least one eigenvalue.

Proof. Suppose V is a complex vector space with dimension n > 0. For
some vector v ∈ V we can write the n+1 vectors

v,Tv,T 2v, . . . ,Tnv (9)
Because we have n+ 1 vectors in an n-dimensional vector space, these

vectors must be linearly dependent, which means we can find complex num-
bers a0, . . . ,an ∈ C, not all zero, such that

0 = a0v+a1Tv+ . . .+anT
nv (10)

We can consider a polynomial in z with the ai as coefficients:

p(z) = a0 +a1z+ . . .+anz
n (11)

The Fundamental Theorem of Algebra states that any polynomial of de-
gree n can be factored into n linear factors. In our case, the actual degree
of p(z) is m≤ n since an could be zero. So we can factor p(z) as follows:

p(z) = c(z−λ1) . . .(z−λm) (12)
where c 6= 0.
Comparing this to 10, we can write that equation as

0 = a0v+a1Tv+ . . .+anT
nv (13)

= (a0I+a1T + . . .+anT
n)v (14)

= c(T −λ1I) . . .(T −λmI)v (15)

All the T −λiI operators in the last line commute with each other since
I commutes with everything and T commutes with itself, so in order for the
last line to be zero, there has to be at least one λi such that (T −λiI)v = 0.
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That is, there is at least one λi such that T −λiI has a nonzero null space,
which means λi is an eigenvalue. �
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