ANGULAR MOMENTUM AS AN EIGENVECTOR PROBLEM

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.

The angular momentum in classical mechanics of a collection of point masses m_a located at positions r_a and moving with a common angular velocity ω about a common axis is given by

$$L = \sum_{a} m_a (r_a \times v_a)$$ \hspace{1cm} (1)

where $v_a = \omega \times r_a$ is the linear velocity of m_a. We can use the vector identity

$$A \times (B \times C) = B(A \cdot C) - C(A \cdot B)$$

to write

$$r_a \times v_a = r_a \times (\omega \times r_a)$$ \hspace{1cm} (2)

$$= r_a^2 \omega - r_a (r_a \cdot \omega)$$ \hspace{1cm} (3)

In terms of components, this is

$$[r_a \times v_a]_i = r_a^2 \omega_i - (r_a)_i \sum_j (r_a)_j \omega_j$$ \hspace{1cm} (4)

$$= \sum_j \left[r_a^2 \omega_j \delta_{ij} - (r_a)_i (r_a)_j \omega_j \right]$$ \hspace{1cm} (5)

$$= \sum_j \left[r_a^2 \delta_{ij} - (r_a)_i (r_a)_j \right] \omega_j$$ \hspace{1cm} (6)

We can therefore write the angular momentum as

$$L_i = \sum_j \sum_a m_a \left[r_a^2 \delta_{ij} - (r_a)_i (r_a)_j \right] \omega_j$$ \hspace{1cm} (7)

$$\equiv \sum_j M_{ij} \omega_j$$ \hspace{1cm} (8)

where the matrix M is
\[M_{ij} \equiv \sum_a m_a \left[r_a^2 \delta_{ij} - (r_a)_i (r_a)_j \right] \] (9)

From the definition, we see that \(M \) is real and symmetric (interchanging \(i \) and \(j \) shows that \(M_{ij} = M_{ji} \)), so \(M \) is hermitian.

In Dirac’s notation, we have the matrix equation

\[|L\rangle = M |\omega\rangle \] (10)

From this equation, we can see that \(L \) and \(\omega \) are parallel only if \(\omega \) is an eigenvector of \(M \). If the eigenvalues of \(M \) are non-degenerate, there are therefore three directions for \(\omega \) such that \(L \) and \(\omega \) are parallel, and these directions can be found by solving for the eigenvectors of \(M \).

If some of the eigenvalues are degenerate, then there is a range of directions over which \(L \) and \(\omega \) can be parallel. In the case of a sphere, all 3 eigenvalues of \(M \) must be the same, as all directions are axes of symmetry of the sphere.

As an example, suppose we have only one mass \(m = 1 \) with position

\[\mathbf{r} = [1, 1, 0] \] (11)

We can work out \(M \) by substituting into (9)

\[M = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \] (12)

The eigenvalues are 0, 2 and 2 with corresponding eigenvectors

\[|\lambda = 0\rangle = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \] (13)

\[|\lambda = 2\rangle = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} \] (14)

Thus if \(\omega \) is a linear combination of the two eigenvectors for \(\lambda = 2 \), it will be parallel to \(L \). If \(\omega \) is parallel to \(\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \), \(L = 0 \), as in this case \(\omega \) is parallel to \(\mathbf{r} \) so \(\omega \times \mathbf{r} = 0 \), and the mass is located on the axis of rotation so has no angular momentum.