HAMILTONIAN FOR THE ELECTROMAGNETIC FORCE

Link to: physicspages home page.

To leave a comment or report an error, please use the auxiliary blog.

References: Shankar, R. (1994), *Principles of Quantum Mechanics*, Plenum Press. Section 2.6.

Here we derive the equations of motion for the electromagnetic force using the Hamiltonian formalism.

The Hamiltonian is given by

$$H(q,p) = \sum_{i} p_{i}\dot{q}_{i} - L(q,\dot{q})$$

$$\tag{1}$$

where the velocities \dot{q}_i are expressed in terms of the positions q_i and momenta p_i . The electromagnetic Lagrangian is

$$L = \frac{1}{2}m\mathbf{v} \cdot \mathbf{v} - q\phi + \frac{q}{c}\mathbf{v} \cdot \mathbf{A}$$
 (2)

where ϕ is the electric potential and **A** is the magnetic potential, with **v** the velocity of the charge q with mass m. To convert to the Hamiltonian, we need the momentum, defined as

$$p_i = \frac{\partial L}{\partial \dot{q}_i}$$

In this case, the generalized velocity is given by

$$\dot{q}_i = v_i \tag{3}$$

so we have

$$p_i = mv_i + \frac{q}{c}A_i \tag{4}$$

or, in vector notation

$$\mathbf{p} = m\mathbf{v} + \frac{q}{c}\mathbf{A} \tag{5}$$

$$\mathbf{v} = \frac{\mathbf{p}}{m} - \frac{q}{mc} \mathbf{A} \tag{6}$$

The Lagrangian is therefore

$$L = \frac{\left|\mathbf{p} - q\mathbf{A}/c\right|^2}{2m} - q\phi + \frac{q}{c}\left(\frac{\mathbf{p}}{m} - \frac{q}{mc}\mathbf{A}\right) \cdot \mathbf{A}$$
 (7)

The first sum in the Hamiltonian is

$$\sum_{i} p_{i} \dot{q}_{i} = \mathbf{p} \cdot \mathbf{v} = \mathbf{p} \cdot \left(\frac{\mathbf{p}}{m} - \frac{q}{mc} \mathbf{A} \right)$$
 (8)

The Hamiltonian is then

$$H = \mathbf{p} \cdot \left(\frac{\mathbf{p}}{m} - \frac{q}{mc}\mathbf{A}\right) - \frac{|\mathbf{p} - q\mathbf{A}/c|^2}{2m} + q\phi - \frac{q}{c}\left(\frac{\mathbf{p}}{m} - \frac{q}{mc}\mathbf{A}\right) \cdot \mathbf{A}$$
(9)

$$= \left(\frac{\mathbf{p}}{m} - \frac{q}{mc}\mathbf{A}\right) \left(\mathbf{p} - \frac{q}{c}\mathbf{A}\right) - \frac{|\mathbf{p} - q\mathbf{A}/c|^2}{2m} + q\phi$$
 (10)

$$=\frac{|\mathbf{p}-q\mathbf{A}/c|^2}{2m}+q\phi\tag{11}$$

PINGBACKS

Pingback: Harmonic oscillator in a magnetic field

Pingback: Second-order correction to zeeman effect in hydrogen

Pingback: Klein-Gordon equation - interaction with electromagnetic field

Pingback: Klein-Gordon equation with scalar 1/r potential