HAMILTONIAN FOR THE ELECTROMAGNETIC FORCE

Here we derive the equations of motion for the electromagnetic force using the Hamiltonian formalism.

The Hamiltonian is given by

\[H(q,p) = \sum_i p_i \dot{q}_i - L(q,\dot{q}) \]

where the velocities \(\dot{q}_i \) are expressed in terms of the positions \(q_i \) and momenta \(p_i \). The electromagnetic Lagrangian is

\[L = \frac{1}{2} m \dot{v} \cdot \dot{v} - q \phi + \frac{q}{c} \dot{v} \cdot A \]

where \(\phi \) is the electric potential and \(A \) is the magnetic potential, with \(\dot{v} \) the velocity of the charge \(q \) with mass \(m \). To convert to the Hamiltonian, we need the momentum, defined as

\[p_i = \frac{\partial L}{\partial \dot{q}_i} \]

In this case, the generalized velocity is given by

\[\dot{q}_i = v_i \]

so we have

\[p_i = m v_i + \frac{q}{c} A_i \]

or, in vector notation

\[p = m \dot{v} + \frac{q}{c} A \]

\[\dot{v} = \frac{p}{m} - \frac{q}{mc} A \]

The Lagrangian is therefore

\[L = \frac{|p - qA/c|^2}{2m} - q\phi + \frac{q}{c} \left(\frac{p}{m} - \frac{q}{mc} A \right) \cdot A \]

The first sum in the Hamiltonian is

$$\sum_i p_i \dot{q}_i = \mathbf{p} \cdot \mathbf{v} = \mathbf{p} \cdot \left(\frac{\mathbf{p}}{m} - \frac{q}{mc} \mathbf{A} \right)$$

(8)

The Hamiltonian is then

$$H = \mathbf{p} \cdot \left(\frac{\mathbf{p}}{m} - \frac{q}{mc} \mathbf{A} \right) - \frac{\left| \mathbf{p} - \frac{q}{c} \mathbf{A} \right|^2}{2m} + q\phi - \frac{q}{c} \left(\frac{\mathbf{p}}{m} - \frac{q}{mc} \mathbf{A} \right) \cdot \mathbf{A}$$

(9)

$$= \left(\frac{\mathbf{p}}{m} - \frac{q}{mc} \mathbf{A} \right) \left(\mathbf{p} - \frac{q}{c} \mathbf{A} \right) - \frac{\left| \mathbf{p} - \frac{q}{c} \mathbf{A} \right|^2}{2m} + q\phi$$

(10)

$$= \frac{\left| \mathbf{p} - \frac{q}{c} \mathbf{A} \right|^2}{2m} + q\phi$$

(11)

Pingbacks

Pingback: Harmonic oscillator in a magnetic field
Pingback: Second-order correction to zeeman effect in hydrogen
Pingback: Klein-Gordon equation - interaction with electromagnetic field
Pingback: Klein-Gordon equation with scalar 1/r potential