INFINITE SQUARE WELL - FORCE TO DECREASE WELL WIDTH

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.

One way of comparing the classical and quantum pictures of a particle in an infinite square well is to calculate the force exerted on the walls by the particle. If a particle is in state $|n\rangle$, its energy is

$$E_n = \frac{(n\pi \hbar)^2}{2mL^2}$$

(1)

If the particle remains in this state as the walls are slowly pushed in, so that L slowly decreases, then its energy E_n will increase, meaning that work is done on the system. The force is the change in energy per unit distance, so the force required is

$$F = -\frac{\partial E_n}{\partial L} = \frac{(n\pi \hbar)^2}{mL^3}$$

(2)

If we treat the system classically, then a particle with energy E_n between the walls is effectively a free particle in this region (since the potential $V = 0$ there), so all its energy is kinetic. That is

$$E_n = \frac{1}{2}mv^2$$

(3)

$$v = \sqrt{\frac{2E_n}{m}} = \frac{n\pi \hbar}{mL}$$

(4)

(5)

The classical particle bounces elastically between the two walls, which means its velocity is exactly reversed at each collision. The momentum transfer in such a collision is

$$\Delta p = 2mv = \frac{2n\pi \hbar}{L}$$

(6)

The time between successive collisions on the same wall is
\[\Delta t = \frac{2L}{v} = \frac{2mL^2}{n\pi\hbar} \]
(7)

Thus the average force exerted on one wall is

\[\bar{F} = \frac{\Delta p}{\Delta t} = \frac{(n\pi\hbar)^2}{mL^3} \]
(8)

Comparing with [2] we see that the quantum and classical forces in this case are the same.