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Chapter 11, Exercises 11.4.1 - 11.4.4.
A parity transformation reflects all the coordinate axes through the ori-

gin, so that, in one dimension x→−x and in three dimensions the position
vector r→ −r. In one dimension, a parity transformation is the same as
reflection in a point-sized mirror placed at the origin. It might seem that in
three dimensions, parity is more than just a reflection in a plane mirror, but
in fact it can be shown that it is equivalent to such a reflection followed by a
rotation. To see this, suppose we place a mirror in the xy plane, so that the z
axis gets reflected into−z. This converts a right-handed rectangular coordi-
nate system (where the direction of the z axis is determined by the direction
of your thumb on your right hand when you curl your fingers through the
right angle between the positive x and y axes) into a left-handed coordinate
system (the direction of the new +z axis is found by doing the finger-curling
maneuver with your left hand). However, merely reflecting the z axis in the
xy plane leaves the x and y axes unchanged. Now if we rotate the xy plane
by an angle π (or 180◦) about the z axis, then the +x axis gets rotated into
the −x axis, and the +y axis gets rotated into the −y axis. In this sense,
the 3-d parity transformation is equivalent to a reflection (since pretty well
every physical phenomenon is invariant under a rotation).

To apply parity to quantum state vectors, we define a parity operator Π

to have the following action on the X basis:

Π |x〉= |−x〉 (1)

From this definition we can see the effect on an arbitrary state |ψ〉 by
inserting a complete set of X states:
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Π |ψ〉= Π

ˆ
∞

−∞

|x〉〈x |ψ 〉dx (2)

=

ˆ
∞

−∞

|−x〉〈x |ψ 〉dx (3)

=

ˆ −∞

∞

∣∣x′〉〈−x′ |ψ
〉(
−dx′

)
(4)

=

ˆ
∞

−∞

∣∣x′〉〈−x′ |ψ
〉

dx′ (5)

In the third line we made the substitution x′ =−x, so that dx =−dx′ and
the limits of integration get swapped. As a result of this, the effect of parity
in the X basis representation 〈x |ψ 〉= ψ (x) of a state vector |ψ〉 is

〈x |Π|ψ〉=
ˆ

∞

−∞

〈
x
∣∣x′〉〈−x′ |ψ

〉
dx′ (6)

=

ˆ
∞

−∞

δ
(
x− x′

)〈
−x′ |ψ

〉
dx′ (7)

= ψ (−x) (8)

Parity therefore simply converts x→−x wherever it occurs in the func-
tion ψ (x).

One special case of this is the momentum eigenstate |p〉 which has the
form in the X basis of

〈x |p〉= 1√
2π h̄

eipx/h̄ (9)

The parity transformation gives

〈x |Π| p〉= 1√
2π h̄

e−ipx/h̄ (10)

Another way of looking at this is that parity changes p to −p and leaves
the x alone, so that

Π |p〉= |−p〉 (11)

[You might think that if parity transforms x→−x and p→−p then the
effect on eipx/h̄ should be to switch the signs of both x and p and thus leave
the state unchanged. However, this isn’t correct, as we can express a state
vector in either the X basis (in which x→−x) or in the P basis (in which
p→−p) but not both at the same time.]

http://www.physicspages.com/pdf/Griffiths QM/Griffiths Problems 03.09.pdf
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A few properties of Π can be derived fairly easily. First, since applying
Π twice in succession to the same state swaps x→−x and back again, it
leaves that state unchanged. Since this is true for all states, we must have

Π
2 = I (12)

from which we see that Π is its own inverse, so

Π
−1 = Π (13)

We can also see that Π is Hermitian by considering

〈
ψ

∣∣∣Π†
Π

∣∣∣ψ〉= 〈Πψ |Πψ 〉=
ˆ

∞

−∞

ψ
∗ (−x)ψ (−x)dx (14)

=

ˆ
∞

−∞

ψ
∗ (x′)ψ

(
x′
)

dx′ (15)

= 〈ψ |ψ 〉 (16)

In the second line we used the same trick as in the derivation of 5 to
substitute x′ =−x. Thus we see that

Π
†
Π = I (17)

Π
† = Π

−1 = Π (18)

The condition Π† =Π shows that Π is Hermitian, and the condition Π† =
Π−1 shows that Π is unitary.

Finally, any operator whose square is the identity operator has eigenval-
ues ±1, as we can see as follows. Suppose |ψ〉 is an eigenvector of Π with
eigenvalue α . Then

Π |ψ〉 = α |ψ〉 (19)

Π
2 |ψ〉 = αΠ |ψ〉 (20)

= α
2 |ψ〉 (21)

= I |ψ〉 (22)
= |ψ〉 (23)

Therefore α2 = 1, so α =±1.
We can also define Π by examining its effect on operators, rather than

states. Consider

〈
Πx′ |X |Πx

〉
=

〈
−x′ |X |− x

〉
(24)

= −xδ
(
x′− x

)
(25)
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However, this is equivalent to〈
Πx′ |X |Πx

〉
=
〈

x′
∣∣∣Π†XΠ

∣∣∣x〉=−xδ
(
x′− x

)
(26)

Thus we can write

Π
†XΠ =−X (27)

and similarly for the momentum

Π
†PΠ =−P (28)

Eigenstates of parity are said to be even if the eigenvalue is +1 and odd
if the eigenvalue is −1. Mathematically, the X basis representation of such
eigenstates are even or odd functions of x, respectively.

The Hamiltonian is parity invariant if a parity transformation leaves it
unchanged, so that

Π
†H (X ,P)Π = H (−X ,−P) = H (X ,P) (29)

Since Π† = Π, this condition is equivalent to

[Π,H] = 0 (30)
Using the same argument as with conservation of momentum, if this com-

mutator is valid at all times (if H is time-independent this is automatic; if
H is time-dependent, then we must impose the commutator at all times),
then Π must also commute with the propagator U (t), since U depends only
on H. In this case, if we start with a system in a definite parity state (even
or odd), then the parity of the state doesn’t change with time. This follows
because if [Π,U (t)] = 0 then if Π |ψ (0)〉= α |ψ (0)〉 (where α =±1), then
we can let the state evolve in time by applying the propagator to it, so that
we have

|ψ (t)〉=U (t) |ψ (0)〉 (31)
Applying the parity operator to this and using the commutator, we have

Π |ψ (t)〉= ΠU (t) |ψ (0)〉=U (t)Π |ψ (0)〉= αU (t) |ψ (0)〉= α |ψ (t)〉
(32)

Thus the parity of the evolved state is the same as the parity of the initial
state.

Parity is not always conserved in physics. A notable parity-violating re-
action is a decay involving the weak nuclear force. Shankar describes one
such case with the decay of an isotope of cobalt: 60Co→60 Ni+ e−+ ν̄ .
Another example is in Shankar’s exercise 11.4.3.

http://www.physicspages.com/pdf/Shankar/Shankar Exercises 11.02 Translational invariance and conservation of momentum.pdf
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Suppose that in one particular reaction which emits an electron, the elec-
tron’s spin is observed to be always parallel to its momentum. For the pur-
poses of this argument, we can regard an electron’s spin as being caused by
some physical rotation of the electron. Suppose in one such reaction, the
electron’s spin is in the +z direction (using the right-hand rule for calcu-
lating the direction of angular momentum, so that viewed from above, the
electron is rotating counterclockwise) and therefore its momentum is also
in the +z direction. Now reflect this reaction in a mirror lying in the yz
plane. This reflection will invert the direction of rotation (think of viewing
a spinning top in a mirror) so that the spin direction will now point in the
−z direction, but since the momentum vector is parallel to the plane of the
mirror, it will not be inverted. Thus the spin and momentum are now anti-
parallel after a parity transformation, showing that parity in this case is not
conserved.

Finally, Shankar includes a curious problem (11.4.2) which, as far as I
can tell, doesn’t have anything to do with parity, but I’ll include it here for
completeness. Suppose we have a particle that moves in a potential

V (x) =V0 sin
(

2πx
a

)
(33)

This potential is periodic with a period of a, so if we translate the system
according to x→ x+ma for some integer m, the potential is unchanged.
The problem is to show that momentum is not conserved in this case. The
conservation of momentum argument, valid for infinitesimal translations,
relied on Ehrenfest’s theorem, which states that〈

Ṗ
〉
=− i

h̄
〈[P,H]〉 (34)

If the momentum commutes with the Hamiltonian, then, on average, the
momentum is conserved. Now in this case we can calculate the commutator
[P,V ] using the result

[Xn,P] = ih̄nXn−1 (35)
We can write the potential as a series:

V (X) =V0

[
2πX

a
− 1

3!

(
2πX

a

)3

+ . . .

]
(36)

The commutator is therefore

[V,P] =
2πih̄V0

a

[
1− 1

2!

(
2πX

a

)2

+ . . .

]
=

2πih̄V0

a
cos
(

2πX
a

)
(37)

http://www.physicspages.com/pdf/Shankar/Shankar Exercises 11.02 Translation from Passive Transformation.pdf
http://www.physicspages.com/pdf/Shankar/Shankar Exercises 06.01.01 Classical limit.pdf
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Therefore, Ehrenfest’s theorem gives us (since H presumably is of the
form H = T +V with the kinetic energy depending only on P, so it com-
mutes with P):

〈
Ṗ
〉
=−2πV0

a

〈
cos
(

2πX
a

)〉
(38)

Since the cosine is periodic, we can’t actually calculate a unique value for
its average, although if we do the average over an exact number of periods,
the average is still zero. I have a feeling that I’m missing something obvious
here, so any suggestions are welcome.

COMMENTS

Remark 1. Aaron Stevens
Nov 21, 2017 10:40 PM
I am specifically referring to problem 11.4.2 in Shankar’s Quantum Me-

chanics book (around equation 33 in the above link).
The final equation 38 you arrive at is valid, but then you say,
“Since the cosine is periodic, we can’t actually calculate a unique value

for its average, although if we do the average over an exact number of pe-
riods, the average is still zero. I have a feeling that I’m missing something
obvious here, so any suggestions are welcome.”

Let me see what you think: The final expression that results in the expec-
tation value of the cosine function is not the same thing as the average of the
cosine function. The only time the expectation value is equal to the average
is when the probability distribution in question is the uniform distribution.
In general, this expectation value is state dependent. It is a measure of what
we would “expect” this cosine function to be given the probability distri-
bution of finding the particle between x and x+dx in space (psi* times psi).
We could contrive a state that gives 0 for this expectation value, but I doubt
that the state will then evolve according to the Schrodinger’s equation in
such a way as to keep the expectation value set at 0.

To have momentum conservation, we need the expectation value of the
commutator [P,H] to be 0 always, since momentum conservation is a prop-
erty of the physical system in question, not on the states within that system.
So since we get a “final answer” that is not identically 0, we must say that
momentum is not conserved.

Another way I thought to solve the problem that is simpler but I am un-
sure is valid is that since the potential (and therefore Hamiltonian) is not
invariant under infinitesimal translations that we cannot say momentum is
conserved. Or thinking a little bit differently, just because we have found
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points in space where the potential energy is the same does not mean mo-
mentum is conserved. It is like if you were to push a block down and back
up a hill with friction so that it begins and ends at rest. If you are consid-
ering just the block as your system and then saying since it starts and stops
with the same energy that its energy must have been conserved the entire
time, you would not be correct.

I grade for a quantum class that uses this book, and I think a lot of the
students refer to these solutions, so this is how I came across this. Thanks!

=========
I suspect you’re right. The main point appears to be that in order to

calculate
〈
cos
(2πX

a

)〉
we must do so in a particular state of the particle, and

this will not in general be zero. However, I think your second solution is also
valid - the derivation of constant momentum resulted from the invariance of
the system under infinitesimal translations, and that’s not true in this case.

==========
Aaron Stevens says:
December 19, 2017 at 4:05 pm
Awesome! Thanks! I agree, it requires some thought, and even though

it all sounds good I still feel like I am doing some hand waving, especially
with the infinitesimal translation argument. Thanks for looking it over!
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