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Parity is one of the two main discrete symmetries treated in non-relativistic

quantum mechanics. The other is time reversal, which we’ll look at here.
First, we’ll have a look at what time reversal symmetry means in classical

physics. The idea is that if we can take a snapshot of the system at some
time, each particle will have a given position x and a given momentum p.
If we reverse the direction of time at that instant, the particle’s position
remains the same, but its momentum reverses. In other words x→ x and
p→−p. Note the difference between time reversal and parity: in a parity
operation, both position and momentum get ’reflected’ into their negative
values, while in time reversal, only momentum gets ’reflected’.

We can see how this works by looking at Newton’s law in the form

(0.1) F = m
d2x
dt2

Time reversal invariance is valid if the same equation holds when we
reverse the direction of time, that is, we let t →−t. Since x→ x, the nu-
merator on the RHS is unchanged. For the denominator t→−t means that
dt→−dt and (dt)2→ (−dt)2 = dt2, so the acceleration is invariant. New-
ton’s law is invariant under time reversal provided that the force on the LHS
is invariant, which will be the case provided that F depends only on x and
not on ẋ. This is true for forces such as Newtonian gravity and electrostat-
ics, but is not true for the magnetic force felt by a charge q moving through
a magnetic field B with velocity v, where the Lorentz force law holds:

(0.2) F = qv×B

This follows because v→−v so if the field B is the same after time re-
versal, F→−F. However, because all magnetic fields are produced by the
motion of charges, if we expand the time reversal to include the charges giv-
ing rise to the magnetic field B, then the motion of all these charges would
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reverse, which in turn would cause B→−B. Thus if we time-reverse the
entire electromagnetic system, the electromagnetic force is invariant under
time reversal.

How does time reversal work in quantum mechanics? Shankar considers
a particle in one dimension governed by a time-independent Hamiltonian,
which obeys the Schrödinger equation, as usual:

(0.3) ih̄
∂ψ (x, t)

∂ t
= H (x)ψ (x, t)

At this point, Shankar states that if we replace ψ by its complex conjugate
ψ∗, we are implementing time reversal, claiming that it is ’clear’ because
ψ∗ gives the same probability distribution as ψ . I cannot find any reason
why this should be ’clear’ from this statement, so let’s try looking at the
problem in a bit more detail. The clearest explanation I’ve found is in Zee’s
book, referenced above.

In order that the system be invariant under time reversal, we consider
the transformation t→ t ′ =−t and we wish to find some operator T which
operates on the wave function ψ (t) so that

(0.4) T ψ (t) = ψ
′ (t ′)= ψ

′ (−t)

[I’m suppressing the dependence on x for brevity; since time reversal
doesn’t affect x, it stays the same throughout this argument] satisfies the
Schrödinger equation in the form

(0.5) ih̄
∂ψ ′ (t ′)

∂ t ′
= Hψ

′ (t ′)
From this, we get

(0.6) ih̄
∂ (T ψ (t))

∂ (−t)
= HT ψ (t)

Whatever this unknown operator T is, it has an inverse, so we can multi-
ply on the left by T−1 to get

(0.7) T−1 (−i)T h̄
∂ψ (t)

∂ t
= T−1HT ψ (t)

Notice that we’re not assuming that T has no effect on i (that is, we’re
not assuming that we can pull i out of the expression on the LHS). Now
we know that T has an effect only if what it operates on depends on time
(since it’s the time reversal operator) so, since we’re assuming that H is
time-independent, we must have [H,T ] = 0. Given this, we have
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(0.8) T−1HT = T−1T H = H

Thus, the RHS of 0.7 reduces to the RHS of the original Schrödinger
equation 0.3. If the Schrödinger equation is to remain valid after time re-
versal, the LHS of 0.7 must also reduce to the LHS of 0.3. That is, we must
have

(0.9) T−1 (−i)T = i

Multiplying on the left by T we get

(0.10) − iT = Ti

In other words, one of the effects of T is that it takes the complex conju-
gate of any expression that it operates on.

To find out exactly what T is, we can write it as the product of a unitary
operator U and the operator K, whose only job is that it takes the complex
conjugate. Since doing the complex conjugate operation twice in succession
returns us to the original expression, K2 = I, so K = K−1. We get

T = UK(0.11)
T−1 = K−1U−1 = KU−1(0.12)

Ordinary unitary operators are linear in the sense that U (αψ) = αUψ ,
where α is a complex number and ψ is some function, with a similar rela-
tion holding for U−1. Combining the above few equations, we have

T−1 (−i)T = KU−1 (−i)UK(0.13)

= K (−i)U−1UK(0.14)

= iK2(0.15)
= i(0.16)

Thus the most general form for T is some unitary operator U multiplied
by the complex conjugate operator K. We can see that, for such an operator,
and complex constants αand β and functions ψ and φ :
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T (αψ +βφ) =UK (αψ +βφ)(0.17)

=U (α∗Kψ +β
∗Kφ)(0.18)

= α
∗UKψ +β

∗UKφ(0.19)

= α
∗T ψ +β

∗T φ(0.20)

An operator that obeys this relation is called antilinear. The operator T
has the additional property

〈T ψ |T φ 〉= 〈UKψ |UKφ 〉(0.21)

= 〈Uψ |Uφ 〉∗(0.22)

= 〈ψ |φ 〉∗(0.23)

= 〈φ |ψ 〉(0.24)

The third line follows from the fact that a unitary operator preserves inner
products. An antilinear operator that satisfies the condition 〈T ψ |T φ 〉 =
〈φ |ψ 〉 is called antiunitary. [The fact that time reversal is antiunitary was
first derived by Eugene Wigner in 1932. A more general result, known as
Wigner’s theorem, states that any symmetry in a quantum system must be
represented by either a unitary or an antiunitary operator.]

To find U in this case, consider a plane wave state

(0.25) ψ (t) = ei(px−Et)/h̄

Applying T to this state, we have

T ψ (t) = UKei(px−Et)/h̄(0.26)

= Ue−i(px−Et)/h̄(0.27)

In one dimension, the only unitary operator U is a phase factor like eiα

for some real α (since U has to preserve the inner product). We can take
U = 1 since the phase factor cancels out when calculating |T ψ (t)|2. Going
back to 0.4, we see that the time-reversed wave function is

ψ
′ (−t) = T ψ (t) = e−i(px−Et)/h̄(0.28)

ψ
′ (t) = e−i(px+Et)/h̄ = e(−ipx−Et)/h̄(0.29)

Since this is the same as the original wave function except that p→−p,
we see that it is indeed a valid time-reversed wave function. The energy
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is the same (the −Et part of the exponent still has a minus sign) but the
momentum has reversed, giving a wave that moves in the opposite direction.

Another way of looking at time reversal is as follows. Suppose we start
with a system in the state ψ (0) at t = 0. We can let it evolve for a time τ

using the propagator to get the state at time t = τ:

(0.30) ψ (τ) = e−iHτ/h̄
ψ (0)

Applying time reversal via the operator T to this state, we have (we’re
assuming that H is time-independent, but we’re allowing it to be complex)

(0.31) T ψ (τ) = eiH∗τ/h̄
ψ
∗ (0)

If we now evolve this time-reversed state through the same time τ , we
should end up back in the (time-reversed) original state if the system is
invariant under time reversal. That is,

(0.32) ψ (2τ) = e−iHτ/h̄eiH∗τ/h̄
ψ
∗ (0) = ψ

∗ (0)

[Note that we don’t require ψ (2τ) = ψ (0) since ψ (2τ) is the system
in its time-reversed state, where it’s moving in the opposite direction to
the original state. Think about time-reversing a bouncing ball. The ball
becomes effectively time-reversed when it bounces. If the ball is travelling
down at some speed v at a height h, then after bouncing (assuming an elastic
bounce) it will be travelling at the same speed v when it bounces back to the
height h, but it will be moving in the opposite direction.]

In this equation, we’re working in the X basis, so the exponents are nu-
merical functions, not operators, and we’re free to combine the exponents
without worrying about commutators. This means that in order for the sys-
tem to be time-reversal invariant, we must have

(0.33) H (x) = H∗ (x)

In other words, the Hamiltonian must be real. The usual kinetic plus
potential type of Hamiltonian satisfies this since it has the form

(0.34) H =
P2

2m
+V (x)

and although the quantum momentum operator is P = −ih̄ d
dx , its square

is real. In the magnetic force case, the presence of the charge’s velocity as
a linear term (in qv×B) means the momentum operator occurs as a linear
term, making H complex, so time reversal invariance doesn’t hold. Again,
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however, if we included the charges that give rise to the magnetic field, the
discrepancy disappears.


