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Chapter 12, Exercise 12.1.1.
In preparation for an examination of rotation invariance, we’ll have a

look at translational invariance in two dimensions. We can apply much of
what we did with translation in one dimension, where we showed that the
momentum P is the generator of translations. In particular, the translation
operator T (ε) for an infinitesimal translation ε is

T (ε) = I− iε
h̄
P (1)

In two dimensions, we can write an infinitesimal translation as δa where

δa= δaxx̂+ δayŷ (2)

In one dimension, we showed earlier that

〈x |T (ε)|ψ〉= ψ (x− ε) (3)

The analogous relation in two dimensions is

〈x,y |T (δa)|ψ〉= ψ (x− δax,y− δay) (4)

We can verify that the correct form for T (δa) is

T (δa) = I− i

h̄
δa ·P (5)

= I− i

h̄
(δaxPx+ δayPy) (6)

Using the representation of momentum in the position basis, which is

Px = −ih̄ ∂
∂x

(7)

Py = −ih̄ ∂
∂y

(8)

the LHS of 4 is, using 〈x,y |ψ 〉= ψ (x,y):
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〈x,y |T (δa)|ψ〉=
〈
x,y

∣∣∣∣I− i

h̄
(δaxPx+ δayPy)

∣∣∣∣ψ〉 (9)

= ψ (x,y)− δax
∂ψ

∂x
− δay

∂ψ

∂y
(10)

The last line is also what we get if we expand the RHS of 4 to first order in
δa, which verifies that 5 is correct, so that the two-dimensional momentum
P is the generator of two-dimensional translations.

We can apply the exponentiation technique we used in the one-dimensional
case to obtain the translation operator for a finite translation in two dimen-
sions. We need to be careful that we don’t run into problems with non-
commuting operators, but in view of 7 and 8 and the fact that derivatives
with respect to different independent variables commute, we see that

[Px,Py] = 0 (11)
We can divide a finite translation a into N small steps, each of size a

N , so
that the translation is

T (a) =
(
I− i

h̄N
a ·P

)N

(12)

Because the two components of momentum commute, we can take the
limit of this expression to get the exponential form:

T (a) = lim
N→∞

(
I− i

h̄N
a ·P

)N

= e−ia·P/h̄ (13)

Again, because the two components of momentum commute, we can
combine two translations, by a and then by b, to get

T (b)T (a) = e−ib·P/h̄e−ia·P/h̄ = e−i(a+b)·P/h̄ = T (b+a) (14)
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