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Chapter 12, Exercise 12.2.2.
We can also derive the generator of rotations Lz by considering passive

transformations of the position and momentum operators, in a way similar
to that used for deriving the generator of translations. In a passive transfor-
mation, the operators are modified while the state vectors remain the same.
For an infinitesimal rotation εz ẑ about the z axis in two dimensions, the
unitary operator has the form

U [R (εz ẑ)] = I− iεzLz

h̄
(1)

For a finite rotation by φ0ẑ the transformations are given by

〈X〉R = 〈X〉cosφ0−〈Y 〉sinφ0 (2)

〈Y 〉R = 〈X〉sinφ0 + 〈Y 〉cosφ0 (3)

〈Px〉R = 〈Px〉cosφ0−〈Py〉sinφ0 (4)

〈Py〉R = 〈Px〉sinφ0 + 〈Py〉cosφ0 (5)

For the infinitesimal transformation, φ0 = εz and these equations reduce
to

〈X〉R = 〈X〉−〈Y 〉εz (6)
〈Y 〉R = 〈X〉εz+ 〈Y 〉 (7)
〈Px〉R = 〈Px〉−〈Py〉εz (8)
〈Py〉R = 〈Px〉εz+ 〈Py〉 (9)

In the passive transformation scheme, we move the transformation to the
operators to get
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U† [R]XU [R] = X−Y εz (10)

U† [R]Y U [R] = Xεz+Y (11)

U† [R]PxU [R] = Px−Pyεz (12)

U† [R]PyU [R] = Pxεz+Py (13)

Substituting 1 into these equations gives us the commutation relations
satisfied by Lz. For example, in the first equation we have

U† [R]XU [R] =

(
I+

iεzLz

h̄

)
X

(
I− iεzLz

h̄

)
(14)

=X+
iεz
h̄

(LzX−XLz) (15)

=X−Y εz (16)

Equating the last two lines, we get

[X,Lz] =−ih̄Y (17)
Similarly, for the other three equations we get

[Y,Lz] = ih̄X (18)
[Px,Lz] = −ih̄Py (19)
[Py,Lz] = ih̄Px (20)

We can use these commutation relations to derive the form of Lz by using
the commutation relations for coordinates and momenta:

[X,Px] = [Y,Py] = ih̄ (21)
with all other commutators involving X,Y,Px and Py being zero. Start-

ing with 17, we see that

[X,Lz] =− [X,Px]Y (22)
We can therefore deduce that

Lz =−PxY +f (X,Y,Py) (23)
where f is some unknown function. We must include f since the com-

mutators of X with X,Y and Py are all zero, so adding on f still satisfies
17. (You can think of it as similar to adding on the constant in an indefinite
integral.)

Now from 18, we have
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[Y,Lz] = [Y,Py]X (24)
so combining this with 23 we have

Lz =−PxY +PyX+g (X,Y ) (25)
The undetermined function is now a function only of X and Y , since

the dependence of Lz on Px and Py has been determined uniquely by the
commutators 17 and 18.

From 19 we have

[Px,Lz] = [Px,X]Py (26)
We can see that this is satisfied already by 25, except that we now know

that the function g cannot depend on X , since then [Px,g] 6= 0. Thus we
have narrowed down Lz to

Lz =−PxY +PyX+h(Y ) (27)
Finally, from 20 we have

[Py,Lz] =− [Py,Y ]Px (28)
This is satisfied by 27 if we take h = 0 (well, technically, we could take

h to be some constant, but we might as well take the constant to be zero),
giving us the final form for Lz:

Lz =−PxY +PyX (29)
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