HARMONIC OSCILLATOR IN A MAGNETIC FIELD

As another example of the harmonic oscillator, we’ll look at a charged particle moving in a magnetic field. The field \(B \) is given in terms of the magnetic vector potential

\[
A = \frac{B}{2} (-y \hat{x} + x \hat{y})
\]

(1)

The field is

\[
B = \nabla \times A
\]

(2)

\[
= \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right) \hat{z}
\]

(3)

\[
= B \hat{z}
\]

(4)

If the particle is confined to the \(xy \) plane and the magnetic field provides the only force, the force is given by the Lorentz force law

\[
F = qv \times B
\]

(5)

Since \(F \) is always perpendicular to the direction of motion \(v \), the magnetic force does no work, so the kinetic energy and hence the speed \(v \) of the particle is constant. Classically, the particle is thus confined to move in a circle with \(F \) providing the centripetal force, so we have

\[
qvB = \frac{\mu v^2}{\rho}
\]

(6)

\[
v = \frac{qB\rho}{\mu}
\]

(7)

where \(q \) is the charge, \(\mu \) is the mass and \(\rho \) is the radius of the circle. The period of the orbit is
HARMONIC OSCILLATOR IN A MAGNETIC FIELD

\[T = \frac{2\pi \rho}{v} = \frac{2\pi \mu}{qB} \]

which gives an angular frequency of

\[\omega_0 = \frac{2\pi}{T} = \frac{qB}{\mu} \]

This is the result in SI units; Shankar uses Gaussian units, in which the magnetic field picks up a factor of \(\frac{1}{c} \), so in Shankar’s notation, this is

\[\omega_0 = \frac{qB}{\mu c} \]

As the rest of the problem relies on Gaussian units, we’ll stick to them from now on.

Classically, the Hamiltonian for the electromagnetic force is

\[H = \frac{|p - qa/c|^2}{2\mu} + q\phi \]

where \(\phi \) is the electric potential, which is zero here. Thus using (1) we have for the quantum version in which \(p \) and the position vector are replaced by operators

\[H = \left(\frac{P_x + qYB/2c}{2\mu} \right)^2 + \left(\frac{P_y - qXB/2c}{2\mu} \right)^2 \]

We can perform a canonical transformation by defining

\[Q \equiv \frac{1}{qB} \left(cP_x + \frac{qYB}{2} \right) \]
\[P \equiv P_y - \frac{qXB}{2c} \]

We can verify that these coordinates are canonical by checking their commutator:

\[[Q, P] = \frac{1}{qB} \left[cP_x + \frac{qYB}{2}, P_y - \frac{qXB}{2c} \right] \]
\[= \frac{1}{qB} \left(-\frac{qB}{2} [P_x, X] + \frac{qB}{2} [Y, P_y] \right) \]
\[= \frac{i\hbar}{2} \]
\[= i\hbar \]
Thus Q and P have the correct commutator for a pair of position and momentum variables.

Rewriting 12 in terms of Q and P, we have

$$H = \frac{q^2 B^2}{2\mu c^2} Q^2 + \frac{p^2}{2\mu}$$ \hspace{1cm} (19)$$

$$= \frac{p^2}{2\mu} + \frac{\mu}{2} \omega_0^2 Q^2$$ \hspace{1cm} (20)$$

Thus H has the same form as that for a one-dimensional harmonic oscillator with frequency ω_0, so the energy levels of this system must be

$$E = \left(n + \frac{1}{2}\right) \hbar \omega_0$$ \hspace{1cm} (21)$$

We can expand 12 in terms of the original position and momentum variables to get

$$H = \frac{p_x^2 + p_y^2}{2\mu} + \frac{1}{2\mu} \left(\frac{qB}{2\mu c}\right)^2 (X^2 + Y^2) + \frac{qB}{2\mu c} (P_x Y - P_y X)$$ \hspace{1cm} (22)$$

$$= \frac{p_x^2 + p_y^2}{2\mu} + \frac{1}{2\mu} \left(\frac{\omega_0}{2}\right)^2 (X^2 + Y^2) - \frac{\omega_0}{2} (X P_y - Y P_x)$$ \hspace{1cm} (23)$$

$$= H \left(\frac{\omega_0}{2}, \mu\right) - \frac{\omega_0}{2} L_z$$ \hspace{1cm} (24)$$

where $H \left(\frac{\omega_0}{2}, \mu\right)$ is the Hamiltonian for a 2-dim harmonic oscillator with frequency $\omega_0/2$. As we saw when solving that system, the Hamiltonian for the isotropic oscillator commutes with L_z since the potential is radially symmetric, thus the eigenfunctions of H are also eigenfunctions of L_z. In terms of the present problem, this means that the eigenfunctions of $H \left(\frac{\omega_0}{2}, \mu\right)$ are also eigenfunctions of L_z and thus also eigenfunctions of H. In our solution of the 2-dim isotropic oscillator, we found that the energy levels are given by

$$E = \hbar \omega \left(2k + |m| + 1\right)$$ \hspace{1cm} (25)$$

where $k = 0, 1, 2, \ldots$ and m is the angular momentum (in units of \hbar). Thus for the oscillator with Hamiltonian $H \left(\frac{\omega_0}{2}, \mu\right)$, the energy levels are

$$E = \frac{1}{2} \hbar \omega_0 \left(2k + |m| + 1\right)$$ \hspace{1cm} (26)$$

$$= \hbar \omega_0 \left(k + \frac{1}{2} |m| + \frac{1}{2}\right)$$ \hspace{1cm} (27)$$
The energy levels of the original H are therefore, from (24)

$$E = \hbar \omega_0 \left(k + \frac{1}{2} |m| + \frac{1}{2} \right) - \frac{\omega_0}{2} m \hbar$$

(28)

$$= \hbar \omega_0 \left(k + \frac{1}{2} |m| - \frac{1}{2} m + \frac{1}{2} \right)$$

(29)

[Shankar says the k can be 'any integer', but from our original derivation of (25) we found that k is a non-negative integer.] Equation (29) gives the same energies as (21), since if $m > 0$, we get $E = \hbar \omega_0 \left(k + \frac{1}{2} \right)$, while if $m < 0$ we have $E = \hbar \omega_0 \left(k + |m| + \frac{1}{2} \right)$. Both $k + \frac{1}{2}$ and $k + |m| + \frac{1}{2}$ give the same sequence of values as $n + \frac{1}{2}$. [I’m not quite sure the two methods are equivalent, though, since (21) being the solution of a one-dimensional system is non-degenerate, while (29) being a two-dimensional system does have degenerate energy levels.]