
SPHERICALLY SYMMETRIC POTENTIALS: A SIMPLE
EXAMPLE

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Shankar, R. (1994), Principles of Quantum Mechanics, Plenum Press.

Chapter 12, Exercise 12.6.1.
[If some equations are too small to read easily, use your browser’s mag-

nifying option (Ctrl + on Chrome, probably something similar on other
browsers).]

The Schrödinger equation in 3-d for a potential that depends only on r is
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The angular part of the operator on the LHS is essentially the angular

momentum operator L2 (times 1/2µr2):
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, so we can write this as
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Eigenfunctions in this equation satisfy

ψ =RElm (r)Y m
l (θ,φ) (4)

where the subscript Elm refers to the energy E and the angular momen-
tum quantum numbers l and m. Y m

l is a spherical harmonic and RElm is
the radial function which depends on the potential V . The eigenvalues of
L2 are l (l+1) h̄2 so 3 becomes
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We’ve dropped the m from RElm since, for a spherically symmetric po-
tential, the radial function is independent of m.
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Example. Suppose a particle is described by the wave function

ψE (r,θ,φ) = Ae−r/a0 (6)
where A and a0 are constants. What can we deduce about the system?
First, since ψE is independent of θ and φ we see from 2 that

L2ψE = 0 (7)
so the eigenvalue is l = 0 and the state has no angular momentum. From

3 we therefore have
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Working out the derivatives, we have
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Plugging this back into 8 and cancelling terms gives

− 2
ra0

+
1
a2

0
=

2µ
h̄2 (V −E) (11)

If V (r)→ 0 as r→ ∞ we have, in this limit
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The energy is constant at all values of r so we can now find V from 11
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