
FREE PARTICLE MOVING IN THE Z DIRECTION

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Shankar, R. (1994), Principles of Quantum Mechanics, Plenum Press.

Chapter 12, Exercise 12.6.10.
[If some equations are too small to read easily, use your browser’s mag-

nifying option (Ctrl + on Chrome, probably something similar on other
browsers).]

The radial function for a free particle can be either a spherical Bessel
function jl or a spherical Neumann function nl. If the solution space in-
cludes the origin, then only jl is acceptable since the nl functions diverge
as r→ 0.

In rectangular coordinates, a free particle wave function has the form

ψE (x,y,z) =
1

(2πh̄)3/2
eip·r/h̄ (1)

where the energy E is

E =
p2

2µ
=
h̄2k2

2µ
(2)

For a free particle travelling in the z direction, this becomes

ψE (r,θ,φ) =
1

(2πh̄)3/2
eikr cosθ (3)

since z = r cosθ.
Since the solutions of the free-particle Schrödinger equation in spherical

coordinations form a complete set, we must be able to express this wave
function as a linear combination of these solutions, so that

eikr cosθ =
∞

∑
l=0

l

∑
m=−l

Cml jl (kr)Y
m
l (θ,φ) (4)

where the Cml are constants. Because we’re looking at motion in the z
direction, there is no angular momentum about the z axis, which is reflected
in the fact that ψE does not depend on φ. Thus Lz =mh̄ = 0 and m = 0.
We therefore have
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eikr cosθ =
∞

∑
l=0

C0
l jl (kr)Y

0
l (θ,φ) (5)

=
∞

∑
l=0

√
2l+1

4π
C0
l jl (kr)Pl (cosθ) (6)

=
∞

∑
l=0

Cljl (kr)Pl (cosθ) (7)

where

Cl ≡
√

2l+1
4π

C0
l (8)

The problem, of course, is to find these constants. We can do this using
the identities given by Shankar in his problem 12.6.10, which are

ˆ 1

−1
Pl (x)Pl′ (x)dx=

2δll′
2l+1

(9)

Pl (x) =
1

2ll!
dl
(
x2−1

)l
dxl

(10)

=
(−1)l

2ll!
dl
(
1−x2)l
dxl

(11)
ˆ 1

0

(
1−x2)m dx= (2m)!!

(2m+1)!!
(12)

ˆ 1

−1

(
1−x2)m dx= 2(2m)!!

(2m+1)!!
(13)

The last line follows because
(
1−x2)m is an even function and is there-

fore symmetric about x= 0.
We can use the standard procedure for isolating Cl by multiplying both

sides by Ca and using 9.

ˆ 1

−1
Pa (x)e

ikrxdx =
∞

∑
l=0

Cljl (kr)

ˆ 1

−1
Pa (x)Pl (x)dx (14)

=
2

2a+1
Caja (kr) (15)

This relation must be true for all values of r, so we can look at the limit
of small (but not zero, since both sides are then zero) r. We have the as-
ymptotic relation for the spherical Bessel functions
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jl −→
ρ→0

ρl

(2l+1)!!
(16)

We thus have
ˆ 1

−1
Pa (x)e

ikrxdx=−→
r→0

2
2a+1

kara

(2a+1)!!
Ca (17)

We can then look at the integral on the LHS and hope that, when we
expand the exponential, that the terms in (kr)n for n < a vanish. We can
then match the coefficients of (kr)a on both sides to find Ca.

We can see that this will work because the Legendre polynomials Pl are
a complete set of functions, and the polynomial Pl has degree l. This means
that any polynomial of degree a−1 can be written as a linear combination
of the Pl, where l = 0, . . . ,a−1. Because of 9, this means that

ˆ 1

−1
xlPa (x)dx= 0 if l < a (18)

Therefore, when we expand eikrx in a power series, we have

ˆ 1

−1
Pa (x)e

ikrxdx=

ˆ 1

−1
Pa (x)

(
1+ ikrx+

(ikrx)2

2!
+ . . .

)
dx (19)

=

ˆ 1

−1
Pa (x)

(
(ikrx)a

a!
+ . . .

)
dx (20)

In the limit of small r, higher order terms in the sum on the RHS can be
ignored, so we get

(ikr)a

a!

ˆ 1

−1
xaPa (x)dx=

2
2a+1

kara

(2a+1)!!
Ca (21)

Ca =
ia (2a+1)(2a+1)!!

2a!

ˆ 1

−1
xaPa (x)dx (22)

Now consider the integral in the last line. Using 11 we have

ˆ 1

−1
xaPa (x)dx=

(−1)a

2aa!

ˆ 1

−1
xa
da
(
1−x2)a
dxa

dx (23)

We can integrate by parts repeatedly until the derivative in the integrand
disappears. Note that the nth derivative of

(
1−x2)a will always contain

a factor of
(
1−x2) to some power for any n < a, and thus is zero at both

limits of integration. Since the integrated term in the integration by parts
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always contains such a derivative, all integrated terms are zero at both limits.

We therefore integrate
da(1−x2)

a

dxa (a times) and differentiate xa (a times) and
keep only the residual integral after each iteration. The differentiation of xa

(a times) introduces a factor of a!. Since the sign of the residual integral
alternates as we perform each integration by parts, the final result is

ˆ 1

−1
xaPa (x)dx=

(−1)2a

2aa!
a!
ˆ 1

−1

(
1−x2)a dx (24)

=
1
2a

2(2a)!!
(2a+1)!!

(25)

where we used 13 in the last line. The double factorial in the numerator
can be written as

(2a)!! = (2a)(2a−2) . . .(4)(2) (26)
= 2aa(a−1) . . .(2)(1) (27)
= 2aa! (28)

We therefore have

ˆ 1

−1
xaPa (x)dx =

1
2a

2×2aa!
(2a+1)!!

(29)

=
2a!

(2a+1)!!
(30)

Plugging this back into 22 we have

Ca = ia (2a+1) (31)
The wave function for a free particle moving in the z direction is therefore

ψE (r,θ,φ) =
1

(2πh̄)3/2

∞

∑
l=0

ia (2a+1)jl (kr)Pl (cosθ) (32)


