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Chapter 13, Exercise 13.2.1.
[If some equations are too small to read easily, use your browser’s mag-

nifying option (Ctrl + on Chrome, probably something similar on other
browsers).]

The energy levels of hydrogen, when calculated from the Coulomb po-
tential alone (ignoring various perturbations) depend only on the principal
quantum number n according to

E =− 1
n2
µe4

2h̄2 (1)

The quantization arises entirely from the requirement that the radial func-
tion remain finite for large r, and makes no mention of the angular quantum
numbers l andm. Thus each energy level (each value of n) has a degeneracy
of n2, with 2l+1 degenerate states for each l. Each symmetry is associated
with the conservation of some dynamical quantity, with the degeneracy in
m due to conservation of angular momentum.

Shankar points out that, in classical mechanics, any potential with a 1
r de-

pendence conserves the Runge-Lenz vector, defined for the hydregen atom
potential as

n =
p× `
µ
− e

2

r
r (2)

where I’ve used µ for the electron mass to avoid confusion with the Lz

quantum number m.
Although it doesn’t make sense to talk about the orbit of the electron

in quantum mechanics, classically we can see that the conservation of n
implies that the orbit is closed. We can see this as follows.

First, using

`= r×p (3)

we have
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n =
1
µ

p× (r×p)− e
2

r
r (4)

=
1
µ

r× (p ·p)−p(r ·p)− e
2

r
r (5)

=

(
p2

µ
− e

2

r

)
r−p(r ·p) (6)

In the second line, we used the vector identity

A× (B×C) = B(A ·C)−C(A ·B) (7)
Since we’re dealing with a bound state, r must always remain finite, so it

must have a maximum value. At this point dr
dt = 0, which means that there

is no radial motion, which in turn means that all motion at that point must
be perpendicular to r. In other words

p · rmax = 0 (8)
Also, from conservation of energy, we have

E =
p2

2µ
− e

2

r
(9)

so at rmax we have

p2 = 2µ
(
E+

e2

rmax

)
(10)

Plugging these into 6, we get

n =

(
2E+

2e2

rmax
− e2

rmax

)
rmax (11)

=

(
2E+

e2

rmax

)
rmax (12)

Exactly the same argument applies to the case where r is a minimum:
again dr

dt = 0 so r ·p = 0 and we end up with

n =

(
2E+

e2

rmin

)
rmin (13)

If n is conserved (constant), then it must be parallel or anti-parallel to
both rmax and rmin, and the latter two vectors must therefore always have
the same direction. In other words, the particle reaches its maximum (and
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minimum) distance always at the same point in its orbit, meaning that the
orbit is closed.

In a general (elliptical) orbit, rmax > rmin so e2

rmax
< e2

rmin
. Since E < 0

for a bound orbit, we therefore must have

2E+
e2

rmax
< 0 (14)

2E+
e2

rmin
> 0 (15)

This in turn implies that n is anti-parallel to rmax and parallel to rmin.
For a circular orbit, both r and p are constant, so both the kinetic and

potential energies are also constant. From the virial theorem, we know that,
for V ∝

1
r

〈T 〉=−1
2
〈V 〉 (16)

Thus

E = T +V (17)

=
V

2
(18)

= − e
2

2r
(19)

Thus from 12, we see that n = 0 for a circular orbit.
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